Signature of the MSSM with $\nu_R s$ in a long baseline experiment

Results are shown in part in the proceedings for the conference NuFACT04, [arXiv:hep-ph/0410408]

Paper is in progress [arXiv:hep-ph/0502***]

Toshihiko Ota
in collaboration with Joe Sato*

Osaka University Japan, *TUM, Munich, Germany
Contents

- Introduction
 - cLFV: lepton flavor violation in charged lepton sector
 - nLFV: lepton flavor violation with neutrinos
- Model independent analysis
 - Feasibility study to detect nLFV signals
- In the MSSM with ν_{Rs},
 - not only cLFV but also nLFV are induced.
 - Correlation between cLFV and nLFV
 - Size of nLFV couplings. — Detectable or not?
- Summary
Introduction: LFV

- In the SM, there is no LFV. In the SM with m_ν, it is small.

- In the MSSM with ν_Rs, it can be large

 - The large mixings of neutrinos may imply the large cLFV ...

 $$(m_{L}^2)_{\beta}^{\alpha} \simeq -\frac{(6 + a_0^2)m_0^2}{16\pi^2}(Y_{\nu}^\dagger Y_{\nu})_{\beta}^{\alpha} \ln \frac{M_X}{M_R},$$

 $${\text{Br}}(l_{\alpha} \rightarrow l_{\beta}\gamma) \simeq \frac{\alpha^3}{G_F^2} \left(\frac{m_{L}^2}{m_{\text{SUSY}}^8}\right)^{\alpha} \tan^2 \beta.$$}

 Cheng Li (1977), Petcov (1977), Marciano Sandra (1977), Shrock Lee (1977)

LFV in charged lepton sector (cLFV)

\[M_2 = 150 \text{ GeV} \quad m_{\tilde{e}_L} = 300 \text{ GeV} \quad a_0 = 0 \quad \mu > 0 \]

\[\tan^2 \beta \]

One example numerical study
Sato Tobe (2000)

The future experiments
\[\text{Br}(\mu \rightarrow e \gamma) > 10^{-14}, \]
\[\text{Br}(\tau \rightarrow \mu \gamma) > 10^{-8}, \]
\[\text{Br}(\mu \rightarrow e \text{ conv.}) > 10^{-18}. \]

The search for the cLFV is promising experiments.
— However, we here consider an alternative process.
LFV interaction with neutrinos (nLFV)

We here discuss a process with the neutrino flavor violation, such as

\[\mu^- \rightarrow \nu_\tau e^- \bar{\nu}_e, \quad \nu_\alpha e^- \rightarrow \nu_\beta e^-, \quad \nu_\alpha d \rightarrow \ell_\beta u. \]

These processes affect the neutrino oscillation experiments.

Gonzalez-Garcia Grossman Gusso Nir (2001)
Gago Guzzo Nunokawa Teves Zukanovich Funchal (2001)
Huber Schwetz Valle (2002)
Fogli Lisi Mirizzi Montanino (2002)

Can we detect these effects in oscillation experiments?
— Yes, we can, but it depends on the type and size of nLFV interaction.

TO Sato Yamashita (2001)

In the MSSM+ν_R, what is the typical size of nLFV couplings?
— We show the correlation between nLFV and cLFV.
Model independent approach
Standard Oscillation $\nu_\mu \rightarrow \nu_\tau$
Standard Oscillation $\nu_\mu \rightarrow \nu_\tau$

\[
\mathcal{A}(\mu \rightarrow \nu_\mu \bar{\nu}_e e) \times \mathcal{A}(\nu_\mu \xrightarrow{\text{osc}} \nu_\tau) \times \mathcal{A}(\nu_\tau d \rightarrow \tau u)
\]
Standard Oscillation $\nu_\mu \rightarrow \nu_\tau$

$$
|A(\mu \rightarrow \nu_\mu \bar{\nu}_e e) \times A(\nu_\mu \overset{\text{osc}}{\rightarrow} \nu_\tau) \times A(\nu_\tau d \rightarrow \tau u)|^2
$$
Standard Oscillation $\nu_\mu \rightarrow \nu_\tau$

\[\left| A(\mu \rightarrow \nu_\mu \bar{\nu}_e e) \times A(\nu_\mu \overset{\text{osc}}{\rightarrow} \nu_\tau) \times A(\nu_\tau d \rightarrow \tau u) \right|^2 \]

\[\Gamma_{\text{SM}}(\mu \rightarrow \nu_\mu \bar{\nu}_e e) \times P_{\nu_\mu \rightarrow \nu_\tau} \times \sigma_{\text{SM}}(\nu_\tau d \rightarrow \tau u) \]
Oscillation with nLFV interactions

\[\nu_\mu \xrightarrow{\text{oscillation}} \nu_\tau \]

- \(\mu^- \rightarrow W \)
- \(e^- \rightarrow \nu_e \)
- \(e^- \rightarrow W \rightarrow \tau^- \)
- \(d \rightarrow u \)
Oscillation with nLFV interactions

\[\nu_\mu \xrightarrow{\text{oscillation}} \nu_\tau \]

nLFV interaction

\[\nu_\tau \xrightarrow{\text{no oscillation}} \nu_\tau \]
Oscillation with nLFV interactions

\[\nu_\mu \overset{\text{oscillation}}{\rightarrow} \nu_\tau \]

+ nLFV interaction

\[\nu_\tau \overset{\text{no oscillation}}{\rightarrow} \nu_\tau \]

\[2 \]

Signature of the MSSM with \(\nu_R \)s in a long baseline experiment – p.9/20
Oscillation with nLFV interactions

\[
\left| \begin{array}{c}
\nu_\mu \xrightarrow{\text{osc}} \nu_\tau \\
\end{array} \right|^2 + 2 \text{Re} \left[\left(\begin{array}{c}
\nu_\mu \xrightarrow{\text{osc}} \nu_\tau \\
\end{array} \right)^* \left(\begin{array}{c}
n_\text{LFV} \nu_\tau \xrightarrow{\text{no osc}} \nu_\tau \\
\end{array} \right) \right] = \Gamma_{\text{SM}} \times \left(P_{\nu_\mu \rightarrow \nu_\tau} + 2 \text{Re} \left[\epsilon_{\mu \tau}^s A^* (\nu_\mu \xrightarrow{\text{osc}} \nu_\tau) A (\nu_\tau \xrightarrow{\text{no osc}} \nu_\tau) \right] \right) \times \sigma_{\text{SM}},
\]

where \(\epsilon_{\mu \tau}^s \equiv \frac{A(\mu \rightarrow \nu_\tau \bar{\nu}_e e)}{A_{\text{SM}}} \).

- The oscillation probability is modified by the interference term due to the nLFV interaction.
- The size of the interference term is \(\mathcal{O}(\epsilon_{\mu \tau}^s) \), not \(\mathcal{O}(|\epsilon_{\mu \tau}^s|^2) \).
 — This interference effect can occur only in the oscillation process.
Search for the effect of $\epsilon^s_{\mu\tau}$ in $\nu_\mu \rightarrow \nu_\tau$

- Necessary (muon)\times(detector size) for 90% CL detection of nLFV.
 normalized at $10^{21} \times 100$[kton]
 - $\nu_\mu \rightarrow \nu_\tau$ channel
 - $\epsilon^s_{\mu\tau} = 3 \times 10^{-3} e^{i \frac{\pi}{2}}$
 - 10% ambiguity is considered in the oscillation parameters, Δm^2s and θs, and the CP-phase δ is treated as a free parameter.

$$\mu^- \xrightarrow{G_F} \nu_\mu \xrightarrow{\text{osc.}} \nu_\tau \rightarrow \tau^-$$
$$\mu^- \xrightarrow{\epsilon^s_{\mu\tau} G_F} \nu_\tau \xrightarrow{\text{no osc.}} \nu_\tau \rightarrow \tau^-$$

- The energy dependence of this signal is $1/E_\nu$.
It is quite different from the standard oscillation effect($\propto 1/E^2_\nu$).
Oscillation with nLFV interactions

The other diagrams which contribute to $\mathcal{A}(\mu + I \rightarrow \tau + F)$

- no oscillation
- nLFV at detection $\propto \epsilon_{\mu\tau}^d G_F$
- nLFV in matter effect $\propto \epsilon_{\mu\tau}^m G_F$

Signature of the MSSM with ν_F's in a long baseline experiment – p.12/20
Summary of the model independent analysis

Detectable signal ...

In $\nu_\alpha \rightarrow \nu_\beta$ channel, we can extract the nLFV signals only with $\epsilon^{s,m,d}_{\alpha\beta}$.

— by using its characteristic energy dependence.
— the nLFV amplitude does not include neutrino oscillation but its final states are the same as the standard one.

At a neutrino factory (10^{21} muons \times 100 kt detector), we have a chance to detect the signal of $|\epsilon^{s,m,d}_{\alpha\beta}| \sim \mathcal{O}(10^{-4})$.
Summary of the model independent analysis

- Detectable signal ...
 - In $\nu_\alpha \rightarrow \nu_\beta$ channel, we can extract the nLFV signals only with $\epsilon_{s,m,d}^{s,m,d}$.
 - by using its characteristic energy dependence.
 - the nLFV amplitude *does not include neutrino oscillation* but its final states are the same as the standard one.
 - We here deal with $\epsilon_{\mu\tau}^{s,m,d}$ in the $\nu_\mu \rightarrow \nu_\tau$ channel.

- At a neutrino factory (10^{21} muons $\times 100$ kt detector), we have a chance to detect the signal of $|\epsilon_{s,m,d}^{s,m,d}| \sim \mathcal{O}(10^{-4})$.
 - We make a numerical calculation for the size of nLFV couplings $\epsilon_{\mu\tau}^{s,m,d}$ in the MSSM with ν_{RS}.

In the MSSM with ν_{R}
The origin of the nLFV is the same as that of the cLFV: slepton mixing.

Naively, $\epsilon^{s}_{\mu\tau} \sim \mathcal{O}(10^{-4})$ in nLFV corresponds to $\text{Br}(\tau \rightarrow \mu\gamma) \sim \mathcal{O}(10^{-8})$ in cLFV.

— However, for quantitative analysis, it is necessary to make a numerical calculation ...
Numerical evaluation of $\epsilon^s_{\mu\tau}$ in MSSM $+\nu_R$

and box diagrams ...
Numerical evaluation of $\epsilon^m_{\mu\tau}$ in MSSM+ν_R

and box diagrams ...
Numerical evaluation of $\epsilon_{\mu \tau}^{s,m,d}$ in MSSM $+ \nu_R$

Source \quad Matter \quad Detection

μ^- \quad W \quad Z \quad τ^-

ν_e \quad e^- \quad e^- \quad W

W \quad e^- \quad e^- \quad u

$\text{Br}(\tau \rightarrow \mu \gamma)$

$\epsilon_{\mu \tau}^s$ 10^{-5}

$\epsilon_{\mu \tau}^m$ 10^{-5}

$\epsilon_{\mu \tau}^d$ 10^{-4}
Correlation between nLFV and cLFV

- Correlation between the nLFV coupling $\epsilon_{\mu\tau}^s$ and cLFV process $\tau \rightarrow \mu\gamma$.
- With some different Y_ν's, we scan the m_0-$M_{1/2}$ space with $a_0 = 0$, $\tan \beta = 10$, and $\mu > 0$.
- The parameter $\epsilon_{\mu\tau}^s$ is constrained at $\mathcal{O}(10^{-5})$ by the current bound of $\tau \rightarrow \mu\gamma$.
- It is smaller than the naive estimation because of cancellation among diagrams.
Summary
Summary

- The large neutrino mixings may imply the sizable effect not only for cLFV but also nLFV.
The large neutrino mixings may imply the sizable effect not only for cLFV but also nLFV.

The oscillation enhances the nLFV effect due to interference.
Summary

- The large neutrino mixings may imply the sizable effect not only for cLFV but also nLFV.
- The oscillation enhances the nLFV effect due to interference.
- We evaluate the effective couplings of nLFV which are relevant to $\nu_\mu \rightarrow \nu_\tau$ in the MSSM with ν_{Rs}.
 - $\epsilon_{\mu\tau}^s$, $\epsilon_{\mu\tau}^m$, $\epsilon_{\mu\tau}^d$ where $\epsilon_{\mu\tau}^{s,m,d} \equiv$ exotic/standard
 - Detectable size: $|\epsilon_{\mu\tau}^{s,m,d}| \gtrsim \mathcal{O}(10^{-4})$
The large neutrino mixings may imply the sizable effect not only for cLFV but also nLFV.

The oscillation enhances the nLFV effect due to interference.

We evaluate the effective couplings of nLFV which are relevant to $\nu_\mu \rightarrow \nu_\tau$ in the MSSM with $\nu_{R}s$.

- $\epsilon_{\mu\tau}^s$, $\epsilon_{\mu\tau}^m$, $\epsilon_{\mu\tau}^d$ where $\epsilon_{\mu\tau}^{s,m,d} \equiv$ exotic/standard

- Detectable size: $|\epsilon_{\mu\tau}^{s,m,d}| \gtrsim \mathcal{O}(10^{-4})$

- In the MSSM with $\nu_{R}s$, these couplings are constrained by the process $\tau \rightarrow \mu \gamma$ as $|\epsilon_{\mu\tau}^{s,m,d}| \lesssim \mathcal{O}(10^{-5})$.
Summary

- The large neutrino mixings may imply the sizable effect not only for cLFV but also nLFV.
- The oscillation enhances the nLFV effect due to interference.
- We evaluate the effective couplings of nLFV which are relevant to $\nu_\mu \rightarrow \nu_\tau$ in the MSSM with ν_{Rs}.
 - $\epsilon_{\mu \tau}^s$, $\epsilon_{\mu \tau}^m$, $\epsilon_{\mu \tau}^d$ where $\epsilon_{\mu \tau}^{s,m,d}$ ≡ exotic/standard
 - Detectable size: $|\epsilon_{\mu \tau}^{s,m,d}| \gtrsim \mathcal{O}(10^{-4})$
- In the MSSM with ν_{Rs}, these couplings are constrained by the process $\tau \rightarrow \mu \gamma$ as $|\epsilon_{\mu \tau}^{s,m,d}| \lesssim \mathcal{O}(10^{-5})$.
- Other model? — R-parity violation ...
 — CPV MSSM ...
 — $SU(5)$ GUT ...

Signature of the MSSM with ν_{Rs} in a long baseline experiment – p.21/20