Sphaleron Process and L-to-B Conversion

Koichi FUNAKUBO, Saga Univ.

May 9, 2002 at YITP

content

- 1. Introduction
- 2. Sphaleron Process
- **3.** B and L in Hot Universe
- 4. Discussions

# 1. Introduction



Nucleosynthesis



•  $T \gg 1 \text{MeV}$  :  $n \leftrightarrow p + e + \bar{\nu}_e \Rightarrow n/p = 1$ 

• 
$$T = T_F \simeq 1 \text{MeV}$$
  $\Gamma_{n \leftrightarrow p}(T_F) \simeq H$   
 $\left(\frac{n}{p}\right)_{\text{freeze-out}} = e^{-(m_n - m_p)/T_F} \simeq \frac{1}{6}$ 

• 
$$T = 0.3 - 0.1 \text{MeV}$$
  
 $\frac{n}{p} \longrightarrow \frac{1}{6} - \frac{1}{7}$  depending on  $\frac{n_B}{n_{\gamma}}$  cf.  $s \simeq 7n_{\gamma}$ 

$$\frac{n_B}{s} = \frac{n_b - n_{\bar{b}}}{s} = (0.2 - 0.9) \times 10^{-10}$$

— constant after the decoupling of  $\Delta B \neq 0$  process

evidence of the BAU [Steigman, Ann.Rev.Astron.Astrop.14('76)]

- 1. no anti-matter in cosmic rays from our galaxy some anti-matter consistent as secondary products
- 2. nearby clusters of galaxies are stable a cluster:  $(1 \sim 100) M_{\text{galaxy}} \simeq 10^{12 \sim 14} M_{\odot}$

Starting from a *B*-symmetric universe . . .

$$\frac{n_b}{s} \simeq \frac{n_{\bar{b}}}{s} \sim 8 \times 10^{-11} \text{ at } T = 38 \text{MeV}$$

$$\sim 7 \times 10^{-20} \text{ at } T = 20 \text{MeV}$$

$$N\bar{N}\text{-annihilation decouple}$$

At T = 38 MeV, mass within a causal region  $= 10^2 M_{\odot} \ll 10^{12} M_{\odot}$ .

We must have the BAU  $\frac{n_B}{s} = (0.2 - 0.9) \times 10^{-10}$ before the universe was cooled down to  $T \simeq 38$  MeV.

### 3 requirements for generation of BAU

[Sakharov, '67]

baryon number violation

(1) Early Charles
(2) C and CP violation
(3) departure from equilibrium

GUTs — out of equil. decay of heavy bosons

[review: Kolb & Turner, The Early Universe]

Electroweak baryogenesis

anomalous B + L-violation — sphaleron process 1st order EW phase transition [review: KF, PTP '96] CP violation in extended SM

Leptogenesis [Fukugita & Yanagida, PL '86] decoupling of heavy- $\nu$  decay CP violation in the lepton sector  $\Rightarrow$  Leptogenesis sphaleron BAU

• Affleck-Dine mechanism in SUSY models [NPB '86]  $\langle \text{squark} \rangle \neq 0 \text{ or } \langle \text{slepton} \rangle \neq 0 \text{ along (nearly) flat directions,}$ at high temperature

coherent motion of complex  $\langle \tilde{q} \rangle$ ,  $\langle \tilde{l} \rangle \neq 0$  B, C, CP viol.  $\implies$  B- and/or L-genesis

# 2. Sphaleron Process

## **\*** Anomalous fermion number nonconservation

axial anomaly in the standard model

$$\partial_{\mu} j^{\mu}_{B+L} = \frac{N_f}{16\pi^2} [g^2 \text{Tr}(F_{\mu\nu} \tilde{F}^{\mu\nu}) - {g'}^2 B_{\mu\nu} \tilde{B}^{\mu\nu}]$$
  
$$\partial_{\mu} j^{\mu}_{B-L} = 0$$

 $N_f =$  number of the generations,  ${ ilde F}^{\mu
u} \equiv {1\over 2} \epsilon^{\mu
u
ho\sigma} F_{
ho\sigma}$ 

integrating these equations,

$$\begin{split} B(t_f) &- B(t_i) \\ &= \int_{t_i}^{t_f} d^4 x \, \frac{1}{2} \left[ \partial_\mu j^\mu_{B+L} + \partial_\mu j^\mu_{B-L} \right] \\ &= \frac{N_f}{32\pi^2} \int_{t_i}^{t_f} d^4 x \left[ g^2 \text{Tr}(F_{\mu\nu} \tilde{F}^{\mu\nu}) - g'^2 B_{\mu\nu} \tilde{B}^{\mu\nu} \right] \\ &= N_f \left[ N_{CS}(t_f) - N_{CS}(t_i) \right] \end{split}$$

where  $N_{CS}$  is the Chern-Simons number: in the  $A_0 = 0$  gauge,

$$N_{CS}(t) = \frac{1}{32\pi^2} \int d^3x \,\epsilon_{ijk} \left[ g^2 \operatorname{Tr} \left( F_{ij} A_k - \frac{2}{3} g A_i A_j A_k \right) - g'^2 B_{ij} B_k \right]_t$$

classical vacua of the gauge sector  $\mathcal{E} = \frac{1}{2}(\mathbf{E}^2 + \mathbf{B}^2) = 0$   $\iff F_{\mu\nu} = B_{\mu\nu} = 0$   $\iff A = iU^{-1}dU$  and B = dv with  $U \in SU(2)$   $\therefore U(\mathbf{x}) : S^3 \ni \mathbf{x} \longrightarrow U \in SU(2) \simeq S^3$  $\pi_3(S^3) \simeq \mathbf{Z} \Rightarrow U(\mathbf{x})$  is classified by an integer  $N_{CS}$ .

energy functional vs configuration space



background U changes with  $\Delta N_{CS} = 1$ 

 $\Rightarrow \Delta B = 1 \ (\Delta L = 1)$  in each (left-) generation

 $\iff \left\{ \begin{array}{l} \bullet \text{ level crossing} \\ \bullet \text{ index theorem} \end{array} \right.$ 

Transition of the field config. with  $\Delta B \neq 0$ 

| quantum tunneling  | low temperature  |
|--------------------|------------------|
| thermal activation | high temperature |

transition rate with  $\Delta N_{CS} = 1 \iff \mathsf{WKB}$  approx.

# sphaleros : $\sigma \varphi \alpha \lambda \epsilon \rho o \sigma =$ 'ready to fall'

a saddle-point solution of 4d SU(2) gauge-Higgs system [Klinkhammer & Manton, PRD30 ('84)]

 $E_{\rm sph} = 8 - 14 \,\,{\rm TeV}$ 

★ unstable

★ static (3d) solution with finite energy ★ Chern-Simons No. = "1/2" → example below

 $\implies$  over-barrier transition at finite temperature

### cf. instanton

- ★ stable
- $\star$  4d solution with finite euclidean action
- ★ integer Pontrjagin index
- $\implies$  quantum tunneling

tunneling amplitude  $\simeq e^{-S_{\text{instanton}}}$ 

### $\S 2.1$ Fate of false vacuum at $T \neq 0$

decay rate of a false vacuum through quantum tunneling by WKB approximation [Coleman, Aspects of Symmetry]

$$\Gamma \simeq \frac{2}{\hbar} \operatorname{Im} E_0$$
$$\simeq \left(\frac{S_{\rm cl}}{2\pi\hbar}\right)^{1/2} e^{-S_{\rm cl}/\hbar} \left[1 + O(\hbar)\right]$$

generalization to  $T \neq 0$  case: Affleck, PRL 46 ('81) Langer, Ann.Phys. 41 ('67) – classical

at finite-T,

$$\Gamma \propto {\rm Im} \; F$$

N.B.

 $\operatorname{Im} E_0$  or  $\operatorname{Im} F$  are *defined* by the procedure by which we evaluate them.

Now we define  $\Gamma$  in a natural way and see how  $\Gamma \propto {\rm Im}\, F$  holds.



metastable  $\iff \frac{1}{2}\hbar\omega_0, \ T \ll V_0$ initial state = thermal equil. around  $x_0$ 

Definition of  $\Gamma$  at T :

$$\Gamma \equiv \int_0^\infty dE \; \frac{e^{-\beta E}}{Z_0} \; \Gamma(E)$$

where

$$Z_{0} \equiv \sum_{n=0}^{\infty} e^{-\beta\hbar\omega_{0}(n+1/2)} = \left[2\sinh\frac{\beta\hbar\omega_{0}}{2}\right]^{-1}$$
$$\Gamma(E) \equiv -\frac{i\hbar}{2m}\left(\psi^{*}\psi' - \psi^{*'}\psi\right) \quad \text{prob. current}$$

 $\psi(x) \Leftarrow \mathsf{WKB} \text{ approximation} \qquad [Landau-Lifshitz, Q.M.]$ •  $E < V_0$  linear turning pt.  $\Gamma(E) \simeq \frac{1}{2\pi\hbar} \exp\left[-\frac{2}{\hbar} \int_{x_2(E)}^{x_3(E)} dx \sqrt{2m(V(x) - E)}\right]$ •  $E \gtrsim V_0$  parabolic barrier  $\Gamma(E) \simeq \frac{1}{2\pi\hbar} \left\{1 + \exp\left[-\frac{2\pi}{\hbar\omega_-}(E - V_0)\right]\right\}^{-1}$ 

 $\blacklozenge$  Evaluation of  $\Gamma$ 

(i) low temperature :  $T = \beta^{-1} < \frac{\hbar\omega_{-}}{2\pi}$ *E*-integral in  $\Gamma$  is dominated by  $E < V_0$ 

 $\Gamma(E) \leftarrow$  linear turning point approximation

$$\Gamma \simeq \frac{Z_0^{-1}}{2\pi\hbar} \int_0^\infty dE \, e^{-\left[\beta\hbar \cdot E + W(E)\right]/\hbar} = \frac{Z_0^{-1}}{2\pi\hbar} \int_0^\infty dE \, e^{-f(E)/\hbar}$$

with

$$W(E) \equiv 2 \int_{x_2(E)}^{x_3(E)} dx \sqrt{2m(V(x) - E)}$$

semiclassical approximation at  $\hbar \sim 0$ 

 $\longrightarrow$  dominated by the saddle point :  $f'(E_0) = 0$ 

$$f'(E) = \beta\hbar - T(E) = 0$$

where

$$T(E) \equiv \int_{x_2(E)}^{x_3(E)} dx \sqrt{\frac{2m}{V(x) - E}}$$
  
= period of classical orbit in  $-V(x)$  with  $-E$ 

$$\min_{0 \le E < \infty} \{T(E)\} = T(0)$$

$$\simeq \frac{2\pi}{\omega_{-}}$$

$$\beta\hbar \gtrsim \frac{2\pi}{\omega_{-}} \Longrightarrow {}^{\exists}E_0 > 0 \text{ s.t. } \beta\hbar = T(E_0)$$

Gaussian integral :

$$\Gamma \simeq \frac{Z_0^{-1}}{2\pi\hbar} e^{-[T(E_0)E_0 + W(E_0)]/\hbar} \left| \frac{2\pi\hbar}{T'(E_0)} \right|^{1/2}$$

where Legendre trf.

 $T(E) \cdot E + W(E) = S(T(E))$ = action of the classical orbit with -E= action of the bounce (ii) high temperature :  $T = \beta^{-1} \gtrsim \frac{\hbar \omega_{-}}{2\pi}$ no solution to f'(E) = 0 $E \gtrsim V_0$  portion contributes to the *E*-intagral of  $\Gamma$ 

$$\Gamma \simeq \frac{Z_0^{-1}}{2\pi\hbar} \int_0^\infty dE \ e^{-\beta E} / \left[ 1 + e^{-2\pi(E - V_0)/(\hbar\omega_-)} \right]$$

$$= \frac{Z_0^{-1}}{2\pi\hbar} \ e^{-\beta V_0} \int_{-V_0}^\infty dE \ e^{-\beta E} / \left[ 1 + e^{-2\pi E/(\hbar\omega_-)} \right]$$
integrand  $\rightarrow 0$  as  $E \rightarrow -\infty$ 

$$\simeq \frac{Z_0^{-1}}{2\pi\hbar} \ e^{-\beta V_0} \int_{-\infty}^\infty dE \ e^{-\beta E} / \left[ 1 + e^{-2\pi E/(\hbar\omega_-)} \right]$$

$$= Z_0^{-1} \omega_- \cdot \frac{e^{-\beta V_0}}{4\pi \sin(\beta\hbar\omega_-/2)}$$

#### to summarize,

• 
$$T = \beta^{-1} \lesssim \frac{\hbar\omega_{-}}{2\pi}$$
  
 $\Gamma \simeq Z_0^{-1} \left| 2\pi T'(E_0) \right|^{-1/2} e^{-S(E_0)/\hbar}$   
•  $T = \beta^{-1} \gtrsim \frac{\hbar\omega_{-}}{2\pi}$   
 $\Gamma \simeq Z_0^{-1} \omega_{-} \cdot \frac{e^{-\beta V_0}}{4\pi \sin(\beta \hbar \omega_{-}/2)}$ 



$$F = -\frac{1}{\beta} \ln Z$$

where

$$Z = \operatorname{Tr} e^{-\beta H} = \int_{\text{periodic bc}} [dx] e^{-S[x]/\hbar}$$
$$S[x] = \int_{0}^{\beta\hbar} dt \left[\frac{1}{2}m\dot{x}^{2} + V(x)\right]$$

semiclassical approx.  $\hbar \sim 0$  : dominated by a classical path

$$rac{\partial S}{\partial x} = -m\ddot{x}_{
m cl} + V'(x_{
m cl}) = 0$$
  
with bc  $x_{
m cl}(0) = x_{
m cl}(\beta\hbar)$ 

possible classical orbit



(1) and (2) always exist  
(3) is possible only when 
$$\beta\hbar \gtrsim 2\pi/\omega_{-}$$
 [low temp. regime]

contributions to Z

(1) 
$$x_{cl}(t) = x_0$$
  
 $Z^{(1)} \simeq e^{-S[x_{cl}]/\hbar} \int [dy] e^{-\frac{1}{2\hbar} \int_0^{\beta\hbar} dt (\dot{y}^2 + \omega_0^2 y^2)}$   
 $= \frac{1}{2\sinh(\beta\hbar\omega_0/2)} = Z_0$ 

(2) 
$$x_{cl}(t) = 0$$
  
 $Z^{(2)} \simeq e^{-S[x_{cl}]/\hbar} \int [dy] e^{-\frac{1}{2\hbar} \int_0^{\beta\hbar} dt (\dot{y}^2 - \omega_-^2 y^2)}$   
 $= e^{-\beta V_0} \cdot \frac{1}{2i} \cdot \frac{1}{2\sin(\beta\hbar\omega_-/2)}$   
 $\stackrel{\uparrow}{\longrightarrow}$   
assumption of analytic continuation

(3) bounces

*n*-bounce :  $x_b^{(n)} \rightarrow \text{dilute-gas approximation}$ 

- $S[x_b^{(n)}] \simeq n \cdot S[x_b]$ •  $\det[-\partial_t^2 + V''(x_b^{(n)})] \simeq \left[\det(-\partial_t^2 + V''(x_b))\right]^n \equiv K^n$
- $\circ$  sum over the locations  $\subset$  zero-mode integral

$$\int_{0}^{\beta\hbar} dt_1 \int_{0}^{t_1} dt_2 \cdots \int_{0}^{t_{n-1}} dt_n = \frac{(\beta\hbar)^n}{n!}$$

$$Z^{(3)} \simeq \sum_{n=1}^{N(\beta)} \frac{(\beta \hbar)^n}{n!} K^n e^{-nS[x_b]} \qquad N(\beta) \simeq \frac{\beta \hbar}{2\pi/\omega_-}$$

$$K = \int_{1-\text{bounce}} [dy] \exp\left[-\frac{1}{2\hbar} \int_{0}^{\beta\hbar} dt (\dot{y}^{2} + V''(x_{b})y^{2})\right]$$
$$= \left(\frac{S[x_{b}]}{2\pi\hbar}\right)^{1/2} \left[ \det(-\partial_{t}^{2} + V''(x_{b})) \right]^{-1/2}$$
$$\int_{\text{Jacobian of the zero mode}}^{1/2} \left[ \det(-\partial_{t}^{2} + V''(x_{b})) \right]^{-1/2}$$

Note that, as for the operator  $-\partial_t^2 + V''(x_b)$ ,

- $\psi_0(t) = C \dot{x}_b(t)$  is zero mode.  $\therefore (-\partial_t^2 + V''(x_b)) \dot{x}_b(t) = \frac{d}{dt} [-\ddot{x}_b + V'(x_b)] \equiv 0$
- $\dot{x}_b(t)$  has a node.  $\therefore$  <sup>3</sup>one negative mode

$$\begin{bmatrix} d' (-\partial_t^2 + V''(x_b)) \end{bmatrix}^{-1/2} = \frac{1}{2i} \left| d' (-\partial_t^2 + V''(x_b)) \right|^{-1/2}$$
$$= \frac{1}{2i} \left| S[x_b] \cdot T'(E) \right|^{-1/2}$$
$$\uparrow$$
[Rajaraman, Phys.Rep. C21 ('75)]

$$\therefore Z^{(3)} \simeq \sum_{n=1}^{N(\beta)} \frac{1}{n!} \left[ -\frac{i\beta\hbar}{2} \left( \frac{S[x_b]}{2\pi\hbar} \right)^{1/2} e^{-S[x_b]/\hbar} \right]^n \times |S[x_b] \cdot T'(E)|^{-1/2} \right]^n$$

From

$$\operatorname{Im} F = -\frac{1}{\beta} \operatorname{Im} \left[ \log Z_0 + \log \left( 1 + \frac{Z^{(2)}}{Z_0} + \frac{Z^{(3)}}{Z_0} \right) \right]$$

we have

• low temperature :  $\beta^{-1} < \hbar \omega_{-}/(2\pi)$ 

Im 
$$F \simeq -\frac{1}{\beta Z_0} \text{Im } Z^{(3)} \simeq Z_0^{-1} \frac{\hbar}{2} |2\pi\hbar T'|^{-1/2} e^{-S[x_b]/\hbar}$$

• high temperature :  $\beta^{-1} > \hbar \omega_-/(2\pi)$ 

$$\operatorname{Im} F \simeq -\frac{1}{\beta Z_0} \operatorname{Im} Z^{(2)} \simeq Z_0^{-1} \frac{1}{4\beta \sin(\beta \hbar \omega_-/2)} e^{-\beta V_0}$$

Comparing these results to those obtained by the WKB approximation to the wave function,

$$\star T < \frac{\hbar\omega_{-}}{2\pi}:$$
  

$$\Gamma \simeq \frac{2}{\hbar} \operatorname{Im} F \simeq Z_{0}^{-1} \left| 2\pi\hbar T'(E_{0}) \right|^{-1/2} e^{-S[x_{b}]/\hbar}$$

quantum tunnneling

$$\star T > \frac{\hbar\omega_{-}}{2\pi}:$$

$$\Gamma \simeq \frac{\omega_{-}\beta}{\pi} \operatorname{Im} F \simeq Z_{0}^{-1} \frac{\omega_{-}}{4\pi \sin(\beta \hbar \omega_{-}/2)} e^{-\beta V_{0}}$$
thermal activation

 $\mathrm{Im}\,F$  is applicable to system with many degrees of freedom

applied to 4-dim. SU(2) gauge-Higgs system:

#### ★ broken phase

[Arnold & McLerran, P.R.D36 ('87)]

$$\Gamma_{\rm sph}^{(b)} \simeq k \,\mathcal{N}_{\rm tr} \,\mathcal{N}_{\rm rot} \,\frac{\omega_-}{2\pi} \left(\frac{\alpha_W(T)T}{4\pi}\right)^3 {\rm e}^{-E_{\rm sph}/T}$$

zero modes 
$$\rightarrow \begin{cases} \mathcal{N}_{tr} = 26 \\ \mathcal{N}_{rot} = 5.3 \times 10^3 \end{cases}$$
 for  $\lambda = g^2$   
$$\omega_{-}^2 \simeq (1.8 \sim 6.6) m_W^2 \text{ for } 10^{-2} \le \lambda/g^2 \le 10$$
$$k \simeq O(1)$$

★ symmetric phase — no mass scale

dimensional analysis :

$$\Gamma_{\rm sph}^{(s)} \simeq \kappa (\alpha_W T)^4$$

check by Monte Carlo simulation  $\langle N_{CS}^2(t) \rangle = e^{-\Gamma V t}$  as  $t \to \infty$   $\kappa = 1.09 \pm 0.04$  SU(2) pure gauge system [Ambjørn and Krasnitz, P.L.B362('95)]

'sphaleron transition' even in the symmetric phase

classical stochastic approach

- Langer, Ann.Phys. 54 ('69)
- Ringwald, P.L. B201 ('88)

Fokker-Planck eq. for distribution function  $\rho(q, p; t)$  $\longrightarrow$  stationary prob. flow  $\equiv$  decay rate

### formal density operator approach

- Zubarev, "Nonequilibrium Statistical Thermodynamics"
- Khlebnikov, Shaposhnikov, N.P. B308 ('88)

formal solution to retarded Liouvill eq.

 $\longrightarrow$  linear response approximation

numerical approach — applicable in the symmetric phase

- Grigoriev, Rubakov, Shaposhnikov, P.L. B216 ('89)
- Ambjørn, Askgaard, Porter, Shaposhnikov, N.P. B353 ('91)
- Ambjørn, Krasnitz, P.L. B362 ('95)

classical hamiltonian lattice formalism in  $A_0 = 0$  gauge initial config. from classical statistical mechanics generated by MC method with weight  $e^{-\beta H(\phi,\pi)}$ 

classical time evolution from an initial config.  $(\phi, \pi)$ ergodicity

classical config. at  $\forall t \to N_{CS}(t)$ 

 $\begin{cases} \langle N_{CS} \rangle \\ \langle N_{CS}(t) N_{CS}(0) \rangle \sim \langle N_{CS} \rangle^2 + A e^{-\Gamma t} \end{cases}$ 

§2.3 An Example – 2d U(1) gauge-Higgs system

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + |D_{\mu}\phi|^2 - \lambda \left(|\phi|^2 - v^2\right)^2$$
  
instanton = vortex  $\leftarrow \pi_1(U(1)) = \mathbf{Z}$   
static solutions  $(A_0 = 0\text{-gauge})$ 

ullet vacuum with widing number = N

$$\phi(x) = v e^{i\alpha(x)}, \qquad A_1(x) = \frac{1}{g}\partial_x \alpha(x)$$

with  $\alpha(\infty) - \alpha(-\infty) = 2\pi N$ 

$$\Delta Q_5 = \frac{g}{4\pi} \int_{t_i}^{t_f} dt \, dx \, \epsilon_{\mu\nu} F_{\mu\nu} = N_{CS}(t_f) - N_{CS}(t_i),$$
$$N_{CS}(t) = \frac{g}{2\pi} \int dx \, A_1(x) = N \quad \text{for the vacua}$$

• sphaleron solution

$$\phi_{\rm sph}(x) = e^{i\pi(1-y(x))/2}v \, y(x) = e^{i\theta(x)}v \, y(x),$$

$$A_1^{\rm sph}(x) = \frac{1}{g}\partial_x \theta(x)$$

$$y(x) \equiv \tanh(\sqrt{\lambda}vx) = \tanh(m_H x/2)$$

$$N_{CS} = \frac{g}{2\pi} \int dx \, A_1^{\rm sph}(x) = \frac{1}{2\pi} [\theta(\infty) - \theta(-\infty)] = \frac{1}{2}$$

N.B.

 $\theta(x)$  is not the phase of  $\phi_{\rm sph}(x)$ .  $|\phi_{\rm sph}(x)|$  and  $\operatorname{Arg}(\phi_{\rm sph}(x))$  are singular at x = 0.

### Sphaleron transition

## 1d $U_1(x)$ and $\phi(x)$ on a ring

| $\lambda/g^2$ | #(lattice sites) | $T/E_{\rm sph}$ | $\Gamma_{ m exp}^{-1}$ | $\Gamma_{ m th}^{-1}$ |
|---------------|------------------|-----------------|------------------------|-----------------------|
| 0.5           | 400              | 0.103           | 62                     | 138                   |
| 0.5           | 200              | 0.100           | 140                    | 190                   |
| 0.395         | 200              | 0.094           | 180                    | 190                   |
| 0.32          | 200              | 0.101           | 90                     | 125                   |
| 0.264         | 200              | 0.100           | 103                    | 114                   |
| 0.264         | 400              | 0.100           | 34                     | 58                    |



Fig. 1. States of the system  $(T=0.07M_{sph})$ .



Fig. 2. Chern-Simons number as a function of time ( $T = 0.07 M_{\rm sph}$ ).





ig. 3. Anatomy of the sphaleron transition: (a) Behaviour of the Chern-Simons number. (b) "Trajectories" of the scalar f ifferent moments a-g; the parameter along the curve is the spatial coordinate  $x^1$ . (c) Schematic plot of the sequence of (b).



Fig. 5. Transition rate as a function of the temperature.

# **3.** B and L in Hot Universe

sphaleron process at early universe

\*  $\Gamma_{\rm sph} > H$ ? (*H*:Hubble paramter)

★ distribution of particles which take part in the process

Here, we focus on equilibrium physics. nonequilibrium  $\implies B$ - and/or L-Genesis

 $\S3.1$  Time scales

Hubble parameter: 
$$H \equiv \frac{\dot{a}(t)}{a(t)} \simeq \sqrt{\frac{8\pi G}{3}}\rho(t)$$
  
 $\rho(t)$ : energy density  $\rho = \frac{1}{V} \text{Tr} \left[H e^{-H/T}\right]$  in equil.

We replace  $\rho$  by the sum of free particle contributions:

$$\rho = g \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \frac{\omega_k}{e^{\omega_k/T} \mp 1} \quad \stackrel{m \ll T}{\simeq} \quad g \begin{cases} \frac{\pi^2}{30} T^4 \\ \frac{7}{8} \frac{\pi^2}{30} T^4 \\ \frac{7}{8} \frac{\pi^2}{30} T^4 \end{cases}$$
$$\stackrel{m \gg T}{\simeq} \quad g mn$$

where

$$g =$$
 degrees of freedom of each species  
 $\omega_k = \sqrt{k^2 + m^2}$   
 $n =$  particle number density

For radiation-dominant universe,

$$\rho(T) = \frac{\pi^2}{30} g_* T^4 \quad \text{with} \quad g_* \equiv \sum_B g_B + \frac{7}{8} \sum_F g_F$$

SM with  $N_{f}$  generations and  $N_{H}$  Higgs doublets,

$$g_* = 24 + 4N_H + \frac{7}{8} \times 30N_f \stackrel{\text{MSM}}{=} 106.75$$

Then

$$H \simeq \sqrt{\frac{8\pi G_N}{3}\rho} \simeq 1.66\sqrt{g_*} \frac{T^2}{m_{Pl}}$$

time scales of interactions

 $\sigma$  : cross section of some interaction mean free path :  $\lambda \cdot \sigma = \frac{1}{m}$ for  $m \ll T$  $\lambda \simeq \overline{t} =$  mean free time (((3)))

$$n = g \int \frac{d^3 k}{(2\pi)^3} \frac{1}{e^{\omega_k/T} \mp 1} \quad \stackrel{m \leq T}{\simeq} \quad g \begin{cases} \frac{\frac{3(\varepsilon)}{\pi^2} T^3}{\pi^2} \\ \frac{3}{4} \frac{\zeta(3)}{\pi^2} T^3 \\ \frac{m \geq T}{\simeq} & g \left(\frac{mT}{2\pi}\right)^{3/2} e^{-m/T} \end{cases}$$

0

σ

 $\zeta(3) = 1.2020569\cdots$ 

0

0

0

For relativistic particles at T,  $\sigma \simeq \frac{\alpha^2}{s} \simeq \frac{\alpha^2}{T^2}$ , we have

$$\lambda \simeq \frac{10}{gT^3} \left(\frac{\alpha^2}{T^2}\right)^{-1} = \frac{10}{g\alpha^2 T}$$

For T = 100 GeV,  $H^{-1} \simeq 10^{14} \text{GeV}^{-1}$ ,

 $\begin{array}{l} \lambda_s \simeq \frac{1}{\alpha_s^2 T} \sim 1 \, \mathrm{GeV}^{-1} & \text{for strong interactions} \\ \lambda_{EW} \simeq \frac{1}{\alpha_W^2 T} \sim 10 \, \mathrm{GeV}^{-1} & \text{for EW interactions} \\ \lambda_Y \simeq \left(\frac{m_W}{m_f}\right)^4 \lambda_{EW} & \text{for Yukawa interaction} \end{array}$ for Yukawa interactions

#### time scale of sphaleron process

$$\bar{t}_{\rm sph} = (\Gamma_{\rm sph}/n)^{-1} \simeq \begin{cases} 10^6 T^{-1} \,{\rm GeV}^{-1} & (T > T_C) \\ 10^5 T^{-1} e^{E_{\rm sph}/T} \,{\rm GeV}^{-1} & (T < T_C) \end{cases}$$

[cf.  $E_{\rm sph} \simeq 10 \text{TeV}$  for  $v_0 = 246 \text{GeV}$ ]



If  $v(T_C) \ll 200 \text{GeV}$  (eg. 2nd order EWPT),  $\exists T_{\text{dec}}, s.t.$ 

 $T_{
m dec} < T < T_C \implies \Gamma^{(b)}_{
m sph}(T) > H(T)$ 

### $\S3.2$ Quantum numbers in equilibrium

 $Q_i$ : conserved quantum number  $[H, Q_i] = 0$ equilibrium partition function:

$$Z(T,\mu) \equiv \operatorname{Tr}\left[e^{-(H-\sum_{i}\mu_{i}Q_{i})/T}\right]$$

expectation value of  $Q_i$ :

$$\langle Q_i \rangle(T,\mu) = T \frac{\partial}{\partial \mu_i} \log Z(T,\mu)$$

relations among  $\mu$ 's  $\implies$  relations among Q's

In the SM,  $Q_i = \frac{1}{N}B - L_i$  without lepton-flavor mixing.

1st-principle calculation of  $Z(T,\mu)$ 

- ★ path integral over all fields
- $\star$  nonperturbative B + L violation

#### $\Downarrow$

- perturbation [Khebnikov & Shaposhnikov, PLB387 ('96); Laine & Shaposhnikov, PRD61 ('00) ]
- free-field approximation relation among chemical potentials of the particles

★ Massless free particle approximation

number density of free particles (per degree of freedom)

$$\begin{split} \langle N \rangle &= \int \frac{d^3 k}{(2\pi)^3} \left[ \frac{1}{e^{(\omega_k - \mu)/T} \mp 1} - \frac{1}{e^{(\omega_k + \mu)/T} \mp 1} \right] \\ & \stackrel{m \leq T}{\simeq} \quad \frac{T^3}{2\pi^2} \int_0^\infty dx \left[ \frac{x^2}{e^{x - \mu/T} \mp 1} - \frac{x^2}{e^{x + \mu/T} \mp 1} \right] \\ & \stackrel{|\mu| \ll T}{\simeq} \quad \left\{ \begin{array}{c} \frac{T^3}{3} \cdot \frac{\mu}{T}, & \text{(bosons)} \\ \frac{T^3}{6} \cdot \frac{\mu}{T}, & \text{(fermions)} \end{array} \right. \\ & s = \frac{2\pi^2}{45} g_* T^3 : \text{ entropy density} \\ & \text{particle asymmetry} \quad \frac{\langle N \rangle}{s} \sim \frac{|\mu|}{T} \simeq 10^{-10} \ll 1 \end{split}$$

Quantum number densities in terms of  $\mu$ 

[Harvey & Turner, PRD42 ('90)]

SM with N generations and  $N_H$  Higgs doublets  $(\phi^0\,\phi^-)$ 

| $W^-$   | $u_{L(R)}$       | $d_{L(R)}$       | $e_{iL(R)}$   | $ u_{iL}$ | $\phi^0$ | $\phi^-$  |
|---------|------------------|------------------|---------------|-----------|----------|-----------|
| $\mu_W$ | $\mu_{u_{L(R)}}$ | $\mu_{d_{L(R)}}$ | $\mu_{iL(R)}$ | $\mu_i$   | $\mu_0$  | $\mu_{-}$ |

gauge int., Yukawa int, quark mixings are in equilibrium.

gauge  $\Leftrightarrow \mu_W = \mu_{d_L} - \mu_{u_L} = \mu_{iL} - \mu_i = \mu_- + \mu_0$ Yukawa  $\Leftrightarrow \mu_0 = \mu_{u_R} - \mu_{u_L} = \mu_{d_L} - \mu_{d_R} = \mu_{iL} - \mu_{iR}$ 2(N+2) relations

 $\Rightarrow N+3 \text{ independent } \mu$ 's:  $(\mu_W, \mu_0, \mu_{u_L}, \mu_i)$ 

sphaleron process in equilibrium

$$|0\rangle \leftrightarrow \prod_{i} (u_L d_L d_L \nu_L)_i \Leftrightarrow N(\mu_{u_L} + 2\mu_{d_L}) + \sum_{i} \mu_i = 0$$

Quantum number densities [in unit of  $T^2/6$ ]

$$B = N(\mu_{u_L} + \mu_{u_R} + \mu_{d_L} + \mu_{d_R}) = 4N\mu_{u_L} + 2N\mu_W,$$

$$L = \sum_i (\mu_i + \mu_{iL} + \mu_{iR}) = 3\mu + 2N\mu_W - N\mu_0$$

$$Q = \frac{2}{3}N(\mu_{u_L} + \mu_{u_R}) \cdot 3 - \frac{1}{3}N(\mu_{d_L} + \mu_{d_R}) \cdot 3$$

$$-\sum_i (\mu_{iL} + \mu_{iR}) - 2 \cdot 2\mu_W - 2N_H\mu_-$$

$$= 2N\mu_{u_L} - 2\mu - (4N + 4 + 2N_H)\mu_W + (4N + 2N_H)\mu_C$$

$$I_3 = \frac{1}{2}N(\mu_{u_L} - \mu_{d_L}) \cdot 3 + \frac{1}{2}\sum_i (\mu_i - \mu_{iL})$$

$$-2 \cdot 2\mu_W - 2 \cdot \frac{1}{2}N_H(\mu_0 + \mu_-)$$

$$= -(2N + N_H + 4)\mu_W$$

$$\mu \equiv \sum_i \mu_i$$

•  $T \gtrsim T_C$  (symmetric phase)

We require  $Q = I_3 = 0$ . ( $\mu_W = 0$ )

$$B = \frac{8N + 4N_H}{22N + 13N_H} (B - L)$$
$$L = -\frac{14N + 9N_H}{22N + 13N_H} (B - L)$$

•  $T \leq T_C$  (broken phase) Q = 0 and  $\mu_0 = 0$  ( $\because \phi^0$  condensates.)

$$B = \frac{8N + 4(N_H + 2)}{24N + 13(N_H + 2)} (B - L)$$
$$L = -\frac{16N + 9(N_H + 2)}{24N + 13(N_H + 2)} (B - L)$$

In any case, B = L = 0, if  $(B - L)_{\text{primordial}} = 0$ .

#### To have nonzero BAU,

- (i) we must have B L before the sphaleron process decouples, or
- (ii) B + L must be created at the first-order EWPT, and the sphaleron process must decouple immediately after that.

 $\star$  Corrections due to mass

$$\langle N \rangle = \int_0^\infty \frac{dx}{2\pi^2} \left[ \frac{x^2}{e^{\sqrt{x^2 + m^2/T^2} - \mu/T} \mp 1} - \frac{x^2}{e^{\sqrt{x^2 + m^2/T^2} + \mu/T} \mp 1} \right]$$

$$|\mu| \ll T \simeq \langle N \rangle_{m=0} \cdot \alpha_{\mp}(m/T)$$

where

$$\alpha_{-}(a) \equiv \frac{3}{\pi^{2}} \int_{0}^{\infty} dx \frac{x^{2} e^{\sqrt{x^{2} + a^{2}}}}{(e^{\sqrt{x^{2} + a^{2}}} - 1)^{2}}$$
$$\alpha_{+}(a) \equiv \frac{6}{\pi^{2}} \int_{0}^{\infty} dx \frac{x^{2} e^{\sqrt{x^{2} + a^{2}}}}{(e^{\sqrt{x^{2} + a^{2}}} + 1)^{2}}$$



quantum number densities (in unit of  $T^2/6$ )

$$Q = \sum_{i=1}^{N} \left[ 3 \cdot \frac{2}{3} \alpha_{u_i} (\mu_{u_L} + \mu_{u_R}) - 3 \cdot \frac{1}{3} \alpha_{d_i} (\mu_{d_L} + \mu_{d_R}) - \alpha_i (\mu_{iL} + \mu_{iR}) \right] \\ -\alpha_i (\mu_{iL} + \mu_{iR}) \right] \\ -1 \cdot 2 \cdot 2 \alpha_W \mu_W - N_H \cdot 2 \alpha_- \mu_-$$

$$I_3 = \sum_{i=1}^{N} \left[ \frac{3}{2} (\alpha_{u_i} \mu_{u_L} - \alpha_{d_i} \mu_{d_L}) + \frac{1}{2} (\mu_i - \alpha_i \mu_{iL}) \right] \\ -1 \cdot 2 \cdot 2 \alpha_W \mu_W - \frac{1}{2} N_H \cdot 2 (\alpha_0 \mu_0 + \alpha_- \mu_-)$$

$$B = 3 \cdot \frac{1}{3} \sum_{i=1}^{N} \left[ \alpha_{u_i} (\mu_{u_L} + \mu_{u_R}) + \alpha_{d_i} (\mu_{d_L} + \mu_{d_R}) \right] \\ L = \sum_{i=1}^{N} \left[ \mu_i + \alpha_i (\mu_{iL} + \mu_{iR}) \right]$$

By use of the equilibrium relations among  $\mu$ 's, and introducing

$$egin{aligned} \Delta_l &= N - \sum_i lpha_i, & \mu = \sum_i \mu_i, & \Delta \mu = \mu - \sum_i lpha_i \mu_i, \ \Delta_u &= N - \sum_i lpha_{u_i}, & \Delta_d = N - \sum_i lpha_{d_i}, \end{aligned}$$

5 unknowns  $(\mu_{u_L}, \mu_W, \mu_0, \mu, \Delta \mu)$  before the use of sphaleron equilibrium:  $N(\mu_{u_L} + 2\mu_W) + \mu = 0$ 

$$Q = 2(N - 2\Delta_{u} + \Delta_{d})\mu_{u_{L}}$$
  
-2(2N - \Delta\_{d} - \Delta\_{l} + 2\alpha\_{W} + N\_{H}\alpha\_{-})\mu\_{W}  
+(4N - 2\Delta\_{u} - \Delta\_{d} - \Delta\_{l} + 2N\_{H}\alpha\_{-})\mu\_{0} - 2(\mu - \Delta\mu),  
$$I_{3} = \frac{3}{2}(\Delta_{d} - \Delta_{u})\mu_{u_{L}} + \frac{1}{2}\Delta\mu - N_{H}(\alpha_{0} - \alpha_{-})\mu_{0}+(-2N + \frac{3}{2}\Delta_{d} + \frac{1}{2}\Delta_{l} - 4\alpha_{W} - N_{H}\alpha_{-})\mu_{W},
$$B = 2(2N - \Delta_{u} - \Delta_{d})\mu_{u_{L}} + 2(N - \Delta_{d})\mu_{W} + (\Delta_{d} - \Delta_{u})\mu_{0},
$$L = 3\mu - 2\Delta\mu + 2(N - \Delta_{l})\mu_{W} - (N - \Delta_{l})\mu_{0}$$$$$$

•  $T \gtrsim T_C$  (symmetric phase) quarks, leptons, W: massless

$$r \Rightarrow \Delta_u = \Delta_d = \Delta_l = \Delta\mu = 0$$
,  $\alpha_W = 1$ 

 $m_{\phi^0} = m_{\phi^-} \Rightarrow \alpha_0 = \alpha_-$ 

$$B = \frac{8N + 4N_{H}\alpha_{0}}{22N + 13N_{H}\alpha_{0}} (B - L)$$
$$L = -\frac{14N + 9N_{H}\alpha_{0}}{22N + 13N_{H}\alpha_{0}} (B - L)$$

the same as those in the massless approx. if  $\alpha_0 = 1$ .

•  $T \lesssim T_C$  (broken phase)

| T                  | $\Delta_u$ | $\Delta_d$           | $\Delta_l$           | $lpha_W$ |
|--------------------|------------|----------------------|----------------------|----------|
| 80 GeV             | 0.47       | $4.2 \times 10^{-4}$ | $7.5 \times 10^{-5}$ | 0.60     |
| $100 \mathrm{GeV}$ | 0.35       | $2.7 \times 10^{-4}$ | $4.8 \times 10^{-5}$ | 0.66     |
|                    |            |                      | . 1                  |          |

 $\therefore \ \Delta_d, \Delta_l \ll \Delta_u < 1$ 

Then

$$B = \left(2 + \frac{N}{2\alpha_W + N_H\alpha_-}\right) (2N - \Delta_u)\mu_{u_L} + \frac{N}{2\alpha_W + N_H\alpha_-}\Delta\mu,$$
$$L = -\left[9 + \frac{8(2N - \Delta_u)}{2\alpha_W + N_H\alpha_-}\right]N\mu_{u_L} - 2\left(1 + \frac{2N}{2\alpha_W + N_H\alpha_-}\right)\Delta\mu$$

$$-2\left(1 + \frac{1}{2\alpha_W + N_H\alpha_-}\right)\Delta\mu$$

$$\Rightarrow B + L \not\propto B - L$$

$$\therefore B - L = 0 \text{ does not necessarily imply } B + L = 0$$
and  $B = 0$ 

Suppose that B - L = 0. (at  $\forall t$ )  $\implies \mu_{u_L} = (\cdots) \Delta \mu$ 

$$B = \left[ -\frac{\left(4N - 2\Delta_{u} + \frac{4N(2N - \Delta_{u})}{2\alpha_{W} + N_{H}\alpha_{-}}\right) \left(2\alpha_{W} + N_{H}\alpha_{-} + 3N\right)}{(13N - 2\Delta_{u})(\alpha_{W} + N_{H}\alpha_{-}/2) + 6N(2N - \Delta_{u})} + \frac{2N}{2\alpha_{W} + N_{H}\alpha_{-}} \right] \Delta\mu$$

flavor asymmetry in  $L_i$ 's  $(\mu_i \neq \mu_j)$  $\downarrow$  $B \neq 0$ , even when B - L = 0 Simplified toy model

 $\begin{pmatrix} p_i \\ n_i \end{pmatrix}, \begin{pmatrix} \nu_i \\ e_i \end{pmatrix}, W^- \quad (i = 1 - N) \quad \text{`nucleons' well mixed}$ chemical potential:  $\mu_p, \mu_n, \mu_i, \mu_{ie}, \mu_W$ chemical equil.:  $\bar{p}_i + n_i \rightleftharpoons W^- \rightleftharpoons \bar{\nu}_i + e_i$   $\rightarrow \mu_W = \mu_n - \mu_p = \mu_{ie} - \mu_i \quad \therefore \text{ indep. } (\mu_p, \mu_i, \mu_W)$ sphaleron process:  $\prod_i (n_i \nu_i) \rightleftharpoons |0\rangle \rightarrow N(\mu_p + \mu_W) + \mu = 0$ 

$$Q = (N - \Delta_p)\mu_p - (N - \Delta_e + 4\alpha_W)\mu_W - (\mu - \Delta\mu),$$
  

$$B = (2N - \Delta_p - \Delta_n)\mu_p + (N - \Delta_e)\mu_W,$$
  

$$L = 2\mu - \Delta\mu + (N - \Delta_e)\mu_W$$

In the 'broken phase', Q = 0 and sphaleron equil. lead to

$$\mu_{W} = \frac{1}{N + 4\alpha_{W}} \left[ (N - \Delta_{p})\mu_{p} - (\mu - \Delta\mu) \right],$$
$$\mu = \frac{1}{N + 1} \left[ \frac{N(2N + 4\alpha_{W} - \Delta_{p})}{N + 4\alpha_{W}} \mu_{p} + \Delta\mu \right]$$

Then B and L are linear combinations of  $\mu_p$  and  $\Delta \mu$ .

 $B - L = 0 \Longrightarrow B = L = \text{const.} \times \Delta \mu$ 

Sphaleron process is suppressed by the least  $n_{\nu_i}(?)$ 

If we assumed  $n_i\nu_i \rightleftharpoons |0\rangle$  for each flavor,  $\mu_n + \mu_i = 0$ , and B = L = 0 when we assume B - L = 0.

# 4. Discussions

▷ With sphaleron process in equilibrium, BAU can be generated from nonzero B - L.

- Leptogenesis [Fukugita & Yanagida, PLB174 ('86)] mass scale and CP violation in the heavy  $\nu$ -sector  $\Rightarrow$  Morozumi's and Endoh's talks
- (B L)-violating GUTs SU(5) X, SSB of  $U(1)_{B-L} \in G_{GUT}$   $B=L\neq 0$  B=L=0 B=L=0 (B-L=0) Washed out  $T_{c}$  B=L=0 $M_{GUT}$   $10^{12} \text{GeV}$   $T_{c}$  Iow-T

• Affleck-Dine mechanism initial condition for  $\langle \tilde{q} \rangle$  [Dine, et al. NPB458 ('96)] *Q*-ball formation [Kasuya & Kawasaki, hep-ph/0106119]

▷ "Resurrection of (B − L)-conserving GUT B-genesis" [Fukugita & Yanagida, hep-ph/0203194]

 $\Delta L \neq 0 \text{-processes are in equil. at } T \gg 10^{12} \text{GeV.}$  $\longleftarrow \text{(experimentally indicated } \nu \text{-mass)}$ 

We must require that

the processes decouple before T lowers to  $10^{12}$ GeV. otherwise, B = L = 0.

*e.g.*,

$$\mathcal{L}_{\text{eff}} = \frac{g_i^2}{m_{N_i}} l_i \phi \, l_i \phi \quad \Rightarrow \quad \Gamma_{\Delta L=2} \simeq \frac{0.12 g_i^4 T^3}{4\pi m_{N_i}^2}$$

 $\Gamma_{\Delta L=2} < H(T)$  at  $T < 10^{12} {
m GeV}$ 

 $\Rightarrow$  lower bound on  $m_{N_i} \iff m_{\nu_i} < 0.8 \text{eV}$ 



▷ Effects of nonzero mass

*B*-reproduction at  $T \in [T_{dec}, T_C)$ , if <sup>∃</sup>flavor-asym.  $L_i$ 

- (1) production of  $L_i \neq L_j$
- (2) decoupling of LF-mixing before  $T_C$

Nonvanishing mass at high temperatures

right-handed Majorana mass soft-SUSY-breaking mass

 $\downarrow$ 

modification of particle number densities

 $\Downarrow$  estimation of B ?