Eectroweak and Inflationary Baryogenesis

Koichi Funakubo, Saga U.

May 7, 2001 at Univ. of Tokyo

reviews

K.F., Prog. Theor. Phys. 96 ('96) 475
V.A. Rubakov and M.E. Shaposhnikov, hep-ph/9603208
A.Cohen, et al., Ann.Rev.Nucl.Part.Sci. 33 ('93) 27

Introduction

Baryon Asymmetry of the Universe

$$\frac{n_B}{s} \equiv \frac{n_b - n_{\bar{b}}}{s} = (1.7 - 8.1) \times 10^{-11}$$

We attempt to explain this quantity, assuming that the Universe was *B*-symmetric at the beginning.

baryon number violation
 C and CP violation
 departure from equilibrium

candidates:

- (1) GUTs, SUSY ($\langle \tilde{q} \rangle \neq 0$, *R*-viol.) constraint by p-decay axial anomaly of (B + L) current in the SM
- (2) Yukawa int.(\sim chiral gauge int.), scalar self-int., θ -term

1st example satisfying these conditions: GUTs - decay of heavy X bosons [Yoshimura, '78] $\Gamma_X \simeq H(T_{\rm GUT})$

Sphaleron process

"sphaleron" : classical static solution with one negative mode — SU(2) gauge-Higgs system

[Manton, '83; Klinkhammer & Manton, '84]

top of the energy barrier dividing two classical vacua

vacua of the gauge sector $\Leftrightarrow A = iU^{-1}dU$ with $U \in SU(2)$

 $\partial_{\mu}j^{\mu}_{B+L} = \frac{N_f}{16\pi^2}g^2 \operatorname{Tr}(F_{\mu\nu}\tilde{F}^{\mu\nu}), \qquad \partial_{\mu}j^{\mu}_{B-L} = 0$

$$B(t_f) - B(t_i) = \frac{N_f g^2}{32\pi^2} \int_{t_i}^{t_f} d^4 x \operatorname{Tr}(F_{\mu\nu} \tilde{F}^{\mu\nu})$$
$$= N_f \left[N_{CS}(t_f) - N_{CS}(t_i) \right]$$

where N_{CS} is the Chern-Simons number: in the $A_0 = 0$ gauge,

$$N_{CS}(t) = \frac{g^2}{32\pi^2} \int d^3x \,\epsilon_{ijk} \operatorname{Tr}\left(F_{ij}A_k - \frac{2}{3}gA_iA_jA_k\right)\Big|_t$$

$$E_{\rm sph}(T=0) = \frac{2M_W}{\alpha_W} B\left(\frac{\lambda}{g^2}\right) \simeq 10 {\rm TeV}$$

 λ :the Higgs self coupling, $\alpha_W = g^2/(4\pi)$ $1.5 \leq B \leq 2.7$ for $\lambda/g^2 \in [0, \infty)$

* Transition rate

• T = 0 — (constrained or valley) instanton $\propto e^{-2S_{\text{inst}}} \simeq e^{-378} = 10^{-164}$

•
$$\omega_{-}/(2\pi) \leq T \leq T_{C}$$
 $\omega_{-}:$ negative-mode freq.
 $\Gamma_{sph}^{(b)} \simeq k \mathcal{N}_{tr} \mathcal{N}_{rot} \frac{\omega_{-}}{2\pi} \left(\frac{\alpha_{W}(T)T}{4\pi}\right)^{3} e^{-E_{sph}/T}$
zero modes: $\mathcal{N}_{tr} = 26$, $\mathcal{N}_{rot} = 5.3 \times 10^{3}$ for $\lambda = g^{2}$
 $\omega_{-}^{2} \simeq (1.8 \sim 6.6) m_{W}^{2}$ for $10^{-2} \leq \lambda/g^{2} \leq 10$
 $k \simeq O(1)$
• $T \gtrsim T_{C}$ symmetric phase — no mass scale

$$\Gamma_{\rm sph}^{(s)} \simeq \kappa (\alpha_W T)^4$$

 $\begin{array}{ll} \mbox{Monte Carlo simulation} & \langle N^2_{CS}(t)\rangle = e^{-2\Gamma V t} \mbox{ as } t \to \infty \\ \\ \kappa > 0.4 & SU(2) \mbox{ gauge-Higgs system} \\ & [\mbox{Ambjørn, et al. N.P.B353('91)}] \\ \\ \kappa = 1.09 \pm 0.04 & SU(2) \mbox{ pure gauge system} \\ & [\mbox{Ambjørn and Krasnitz, P.L.B362('95)}] \end{array}$

Washout of B + L

if the sphaleron process is in equilibrium,

B and $L \propto (B-L)_{\rm primordial}$

To have nonzero BAU,

- (i) we must have nonzero B L before the sphaleron process decouples, or
- (ii) B + L must be created at the first-order EWPT, and the sphaleron process must decouple immediately after that.

(i) \leftarrow GUTs, Affleck-Dine, Leptogenesis, ...

(ii) = Electroweak Baryogenesis

Electroweak Baryogenesis

realization of non-equilibrium state

$$\Gamma_{\text{gauge}}, \Gamma_{\text{Yukawa}}, \Gamma_{\text{sph}}^{(s)} \gg H(T \simeq 100 \text{GeV})$$

$$\Gamma_{\text{sph}}^{(b)} < H(T \simeq 100 \text{GeV}),$$
if $\langle \text{Higgs} \rangle$ is large enough in the broken phase
$$\Downarrow$$
first-order electroweak phase transition (EWPT)

\star Mechanism

$$v_{co} \simeq 0.01 v_0 \iff E_{\rm sph}/T_C \simeq 1$$

bubble wall \leftarrow classical config. of the gauge-Higgs system

interactions between the particles and the bubble wall

accumulation of chiral charge in the symmetric phase
 ↓
 generation of baryon number through sphaleron process
 ↓
 decoupling of sphaleron process in the broken phase

e.g. finite-T perturbation theory (+ high-T expansion)

$$V_{\text{eff}}(\varphi;T) \simeq D(T^2 - T_0^2)\varphi^2 - ET\varphi^3 + \frac{\lambda_T}{4}\varphi^4$$

where

$$D = \frac{1}{8v_0^2} (2m_W^2 + m_Z^2 + 2m_t^2)$$

$$E = \frac{1}{4\pi v_0^3} (2m_W^3 + m_Z^3) \sim 10^{-2}$$

$$T_0^2 = \frac{1}{2D} (\mu^2 - 4Bv_0^2)$$

$$\lambda_T = \lambda$$

$$-\frac{3}{16\pi^2 v_0^4} [2m_W^4 \log \frac{m_W^2}{\alpha_B T^2} + m_Z^4 \log \frac{m_Z^2}{\alpha_B T^2} - 4m_t^4 \log \frac{m_t^2}{\alpha_F T^2}]$$

with $\log \alpha_B = 2 \log 4\pi - 2\gamma_E$ and $\log \alpha_F = 2 \log \pi - 2\gamma_E$

At T_C , $\varphi_C = \frac{2E T_C}{\lambda_{T_C}}$ $\Gamma_{\rm sph}^{(b)}/T_C^3 < H(T_C) \iff \frac{\varphi_C}{T_C} \gtrsim 1$ \Rightarrow upper bound on λ $[m_h = \sqrt{2\lambda}v_0]$ $m_h \lesssim 46 \text{GeV}$

> \leftrightarrow inconsistent with the lower bound $m_h > 95.3 \text{GeV}$ 107.7 GeV(LEP)

★ Monte Carlo simulations

effective fermion mass : $m_f(T) \sim O(T) \leftarrow \text{nonzero modes}$... simulation only with the bosons

QFT on the lattice $\begin{cases} \text{ scalar fields: } \phi(x) \text{ on the sites} \\ \text{gauge fields: } U_{\mu}(x) \text{ on the links} \end{cases}$

[MSM]

$$Z = \int \left[d\phi \, dU_\mu
ight] \exp \left\{ -S_E[\phi, U_\mu]
ight\}$$

• 3-dim. SU(2) system with a Higgs doublet and a triplet time-component of the gauge field only zero-freq. modes of the bosons survive as $T \rightarrow$ large matching finite-T Green's functions with 4-dim. theory \Rightarrow T-dependent parameters [Laine & Rummukainen, hep-lat/9809045]

• 4-dim. SU(2) system with a Higgs doublet [Csikor, hep-lat/9910354] EWPT is first order for $m_h < 66.5 \pm 1.4 {\rm GeV}$

Both the simulations found end-point of EWPT at

$$m_h = \begin{cases} 72.3 \pm 0.7 \text{ GeV} \\ 72.1 \pm 1.4 \text{ GeV} \end{cases} \Rightarrow \text{Ino PT in the MSM }!$$

an extension of the SM — MSSM

$$W = \epsilon_{ij} \left(f_{AB}^{(e)} H_d^i L_A^j E_B + f_{AB}^{(d)} H_d^i Q_A^j D_B - f_{AB}^{(u)} H_u^i Q_A^j U_B - \mu H_d^i H_u^j \right)$$

- many complex parameters \Rightarrow explicit CP violation μ , A, B, gaugino masses
- two Higgs doublets \Rightarrow possibility of spontaneous CP viol.

★ Sphaleron

2-doublet Higgs model

[Peccei, Zhang, Kastening, PLB '91]

squarks vs sphaleron

[Moreno, Oakini, Quirós, PLB '97]

★ Electroweak phase transition

3 order parametres:

$$\varphi_d = \frac{1}{\sqrt{2}} \begin{pmatrix} \mathbf{v_1} \\ 0 \end{pmatrix}, \quad \varphi_u = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \mathbf{v_2} + i\mathbf{v_3} \end{pmatrix}$$

 $|\mathsf{Higgs potential}| \iff V_D \& \mathcal{L}_{\mathrm{soft}}|$

$$V_{0} = m_{1}^{2} \Phi_{d}^{\dagger} \Phi_{d} + m_{2}^{2} \Phi_{u}^{\dagger} \Phi_{u} + (m_{3}^{2} \Phi_{u} \Phi_{d} + \text{h.c.}) + \frac{g_{2}^{2} + g_{1}^{2}}{8} (\Phi_{d}^{\dagger} \Phi_{d} - \Phi_{u}^{\dagger} \Phi_{u})^{2} + \frac{g_{2}^{2}}{2} (\Phi_{d}^{\dagger} \Phi_{d}) (\Phi_{u}^{\dagger} \Phi_{u})$$

 \implies The tree-level mass relations

$$m_h^2 \le \min\{m_Z^2, m_A^2\}, \qquad m_A^2 = \frac{m_3^2}{\sin\beta_0 \cos\beta_0}$$

are modified by radiative corrections. [Okada et al. PLB '91]

LEP-Higgs: $m_h \ge 88.3 \text{GeV}, m_H \ge 107.7 \text{GeV}$ $m_A \ge 88.4 \text{GeV}$

 \star EWPT in the MSSM

One-loop effective potential [K.F., hep-ph/9809517 (PTP '99)]

input:

$$v_0 = |\mathbf{v}| = 246 \text{GeV}, \ \tan \beta = \frac{\sqrt{v_2^2 + v_3^2}}{v_1}$$

 $\longrightarrow y_t = \sqrt{2m_t}/(v_0 \sin \beta)$

 M_1 , M_2 , $m^2_{\tilde{t}_L}$, $m^2_{\tilde{t}_R}$, m^2_3 : soft-SUSY-br. parameters

$$m_1^2, m_2^2 \iff \left. \frac{\partial V_{\text{eff}}}{\partial v_1} \right|_{\boldsymbol{v}} = 0, \quad \left. \frac{\partial V_{\text{eff}}}{\partial v_2} \right|_{\boldsymbol{v}} = 0$$

N.B.

• stop mass-squared matrix :

$$\begin{pmatrix} m_{\tilde{t}_L}^2 + \begin{pmatrix} \frac{g_1^2}{24} - \frac{g_2^2}{8} \end{pmatrix} (v_u^2 - v_d^2) + \frac{y_t^2}{2} v_u^2 & \frac{y_t}{\sqrt{2}} \left(\mu v_d + A(v_2 - iv_3) \right) \\ & * & m_{\tilde{t}_R}^2 - \frac{g_1^2}{6} (v_u^2 - v_d^2) + \frac{y_t^2}{2} v_u^2 \end{pmatrix}$$

$$m_{\tilde{t}_L}^2 = 0 \text{ or } m_{\tilde{t}_R}^2 = 0 \Longrightarrow \text{ smaller eigenvalue: } m_{\tilde{t}_1}^2 \sim O(v^2)$$

 \therefore high-T expansion

$$\bar{V}_{\tilde{t}}(\boldsymbol{v};T) \Rightarrow -\frac{T}{6\pi}(m_{-}^2)^{3/2}$$

ightarrow stronger 1st order PT

FIG. 4. The parameter regions compatible with the present experimental upper bound on the neutron EDM.

•
$$\theta + \delta_{\mu} + \delta_2 = O(1) \Longrightarrow m_{\tilde{q}}, m_{\tilde{l}} \gtrsim 10 \text{TeV}$$

• $m_{\tilde{q}}, m_{\tilde{l}} \lesssim 1 \text{TeV} \Longrightarrow \theta + \delta_{\mu} + \delta_2 \lesssim 10^{-3}$

output:

masses of the neutral Higgs scalars

 $\begin{array}{l} \longleftarrow \text{ eigenvalues of } \frac{\partial^2 V_{\text{eff}}(\boldsymbol{v};T=0)}{\partial v_i \partial v_j} \Big|_{\boldsymbol{v}} \\ m_{\tilde{t}_{1,2}}, \ m_{\chi_{1,2}^{\pm}}, \ m_{\chi_{1-4}^{0}} \\ m_{\tilde{t}_1} > 86.4 \text{GeV}, \\ m_{\chi_1^{0}} > 32.5 \text{GeV}, \ m_{\chi_1^{\pm}} > 67.7 \text{GeV for } \tan \beta > 0.7 \\ \text{when } \exists \text{explicit CP violation} \qquad (\mu, M_2, M_1, A_t \in \mathbf{C}) \\ \theta = \text{relative phase of the 2 Higgs} = \operatorname{Arg}(v_2 + iv_3) \end{array}$

 $T \neq 0$ $v(T) = |\boldsymbol{v}(T)|, \tan \beta(T), \theta(T)$ T_C : transition temperature

by numerically searching for the min. of V_{eff}

numerical results $M_2 = M_1$

 $m_t = 175 \,\, \mathrm{GeV} \,\, m_{\tilde{t}_L} = 400 \,\, \mathrm{GeV} \,\, \mu = -300 \,\, \mathrm{GeV} \,\, A_t = 10 \,\, \mathrm{GeV}$

without CP violation

the lighter Higgs scalar mass : m_h (GeV)

at $T \neq 0$

 $\tan\beta=6,\,m_h=82.3{\rm GeV},\,m_A=118{\rm GeV},\,m_{\tilde{t}_1}=168{\rm GeV}$ $T_C=93.4{\rm GeV},\,v_C=129{\rm GeV}$

★ Lattice MC studies

- 3d reduced model [Laine et al. hep-lat/9809045] strong 1st order for $m_{\tilde{t}_1} \lesssim m_t$ and $m_h \leq 110 \text{GeV}$
- 4d model [Csikor, et al. hep-lat/0001087] with SU(3), SU(2) gauge bosons, 2 Higgs doublets, L & R-stops, sbottoms

no scalar trilinear (A) terms, $\tan \beta \simeq 6$

agreement with the perturbation theory within the errors

 $m_A = 500 \text{ GeV}$ $v_C/T_C > 1$ below the steeper lines $\downarrow \downarrow$ max. $m_h = 103 \pm 4 \text{ GeV}$ for $m_{\tilde{t}_L} \simeq 560 \text{ GeV}$

bubble-wall profile $\Delta\beta = 0.0061 \pm 0.0003$ $\Rightarrow \beta \simeq \text{const.}$ wall width $\simeq \frac{11}{T_C}$ CP violation relevant to Baryogenesis

 $-\theta(x)$ in the bubble wall

Eqs. of motion for $(\rho_i(x), \theta(x))$ with $V_{\text{eff}}(\rho_i, \theta; T_C)$ with B.C. determined by the min. of $V_{\text{eff}}(T_C)$

 $\rho(x) \sim 1 + \tanh(ax) : 0 \text{ (sym. phase)} \longrightarrow v_C \text{ (br. phase)}$

bubble wall \sim macroscopic, static \rightarrow 1d system

$$\frac{d^2 \rho_i(z)}{dz^2} - \rho_i(z) \left(\frac{d\theta_i(z)}{dz}\right)^2 - \frac{\partial V_{\text{eff}}}{\partial \rho_i} = 0,$$
$$\frac{d}{dz} \left(\rho_i^2(z) \frac{d\theta_i(z)}{dz}\right) - \frac{\partial V_{\text{eff}}}{\partial \theta_i} = 0$$

with gauge-fixing condition

$$\rho_1^2(z) \frac{d\theta_1(z)}{dz} + \rho_2^2(z) \frac{d\theta_2(z)}{dz} = 0$$

Assume that $\tan \beta(z)$ be constant.

Suppose that at $T \simeq T_C$, without explicit CP violation,

$$\begin{split} V_{\text{eff}}(\rho_i, \theta &= \theta_1 - \theta_2) \\ &= \frac{1}{2} \bar{m}_1^2 \rho_1^2 + \frac{1}{2} \bar{m}_2^2 \rho_2^2 - \bar{m}_3^2 \rho_1 \rho_2 \cos \theta + \frac{\lambda_1}{8} \rho_1^4 + \frac{\lambda_2}{8} \rho_2^4 \\ &+ \frac{\lambda_3 + \lambda_4}{4} \rho_1^2 \rho_2^2 + \frac{\lambda_5}{4} \rho_1^2 \rho_2^2 \cos 2\theta - \frac{1}{2} (\lambda_6 \rho_1^2 + \lambda_7 \rho_2^2) \rho_1 \rho_2 \cos \theta \\ &- [A \rho_1^3 + \rho_1^2 \rho_2 (B_0 + B_1 \cos \theta + B_2 \cos 2\theta) \\ &+ \rho_1 \rho_2^2 (C_0 + C_1 \cos \theta + C_2 \cos 2\theta) + D \rho_2^3] \\ &= \left[\frac{\lambda_5}{2} \rho_1^2 \rho_2^2 - 2 (B_2 \rho_1^2 \rho_2 + C_2 \rho_1 \rho_2^2) \right] \\ &\times \left[\cos \theta - \frac{2 \bar{m}_3^2 + \lambda_6 \rho_1^2 + \lambda_7 \rho_2^2 + 2 (B_1 \rho_1 + C_1 \rho_2)}{2 \lambda_5 \rho_1 \rho_2 - 8 (B_2 \rho_1 + C_2 \rho_2)} \right]^2 \\ &+ \theta \text{-independent terms} \end{split}$$

where all the parameters are real

conditions for spontaneous CP violation for a given (ρ_1, ρ_2)

$$F(\rho_1, \rho_2) \equiv \frac{\lambda_5}{2} \rho_1^2 \rho_2^2 - 2(B_2 \rho_1^2 \rho_2 + C_2 \rho_1 \rho_2^2) > 0,$$

$$-1 < G(\rho_1, \rho_2) \equiv \frac{2\bar{m}_3^2 + \lambda_6 \rho_1^2 + \lambda_7 \rho_2^2 + 2(B_1 \rho_1 + C_1 \rho_2)}{2\lambda_5 \rho_1 \rho_2 - 8(B_2 \rho_1 + C_2 \rho_2)} < 1$$

At $T \simeq T_C$, around the EW bubble wall

$$(\rho_1, \rho_2) : (0, 0) \longrightarrow (v_C \cos \beta_C, v_C \sin \beta_C)$$

There may be a chance to satisfy the conditions in the transient region.

Transitional CP Violation

N.B. no explicit CP violation \Rightarrow no net BAU [FKOT, PTP96 ('96)]

spontaneous CP violation in the transient region

+ small explicit CP violation

to resolve degeneracy between ${\it CP}$ conjugate bubbles

net BAU

$$\frac{n_B}{s} = \frac{\sum_j \left(\frac{n_B}{s}\right)_j N_j}{\sum_j N_j}$$

with

$$N_j = \exp(-4\pi R_C^2 \mathcal{E}_j / T_C)$$
 nucleation rate
 $\mathcal{E}_j =$ energy density of the type-j bubble

Example

[K.F., Otsuki & Toyoda, PTP '99]

input parameters

$ an eta_0$	m_3^2	μ	A_t	$M_2 = M_1$	$m_{ ilde{t}_L}$	$m_{ ilde{t}_R}$
6	$8110~{ m GeV}^2$	$-500~{\rm GeV}$	$60 \mathrm{GeV}$	$500~{\rm GeV}$	$400{\rm GeV}$	0

mass spectrum

m_h	m_A	m_H	$m_{\tilde{t}_1}$	$m_{\chi_1^{\pm}}$	$m_{\chi^0_1}$
$82.28 { m GeV}$	$117.9 {\rm GeV}$	$124.0~{\rm GeV}$	$167.8 { m GeV}$	$457.6 \mathrm{GeV}$	$449.8~{ m GeV}$

at the EWPT

 $T_C = 93.4 \text{ GeV}, \quad v_C = 129.17 \text{ GeV}, \quad \tan \beta = 7.292,$

inverse wall thickness:

$$a = \frac{\sqrt{8V_{\text{max}}}}{v} = 13.23 \text{ GeV} \sim \frac{T_C}{7}$$

thinner than the MC result

Introduce an explicit CP violation by

$$\bar{m}_3^2 \cos \theta \rightarrow \frac{1}{2} \left(\bar{m}_3^2 e^{i(\theta + \delta)} + \text{h.c.} \right)$$

Net chiral charge flux

$$F_Q^{net} = \frac{N^+ F_Q^+ - N^- F_Q^-}{N^+ + N^-}.$$

where

$$\frac{N^{-}}{N^{+}} = \begin{cases} 0.361 & \text{for } \delta = 0.001 \\ 0.601 & \text{for } \delta = 0.002 \end{cases}$$

by charge transport mechanism

$$\begin{split} \frac{n_B}{s} &\sim 10^{-7} \times \frac{F_Q^{net}}{u} \times \frac{\tau}{T_C^2}, \\ u &= 0.1, \ \delta = 10^{-3} \Rightarrow \begin{cases} n_B/s < 10^{-12} & \text{for } b \text{ quark} \\ n_B/s &\sim 10^{-(10-12)} & \text{for } \tau \text{ lepton} \end{cases} \end{split}$$

 \blacklozenge Enhancement of an explicit CP violation

$$\alpha = \operatorname{Arg}(\mu M_2) = \operatorname{Arg}(\mu M_1), \qquad \beta = \operatorname{Arg}(\mu A_t^*),$$

then

$$\bar{m}_{3}^{2} = m_{3}^{2} + \Delta_{\phi^{\pm}}^{(0)} m_{3}^{2} + e^{i\alpha} \Delta_{\chi}^{(0)} m_{3}^{2} + e^{i\beta} \Delta_{\tilde{t}}^{(0)} m_{3}^{2},$$

$$\lambda_{5} = \Delta_{\phi^{\pm}}^{(0)} \lambda_{5} + e^{i2\alpha} \Delta_{\chi}^{(0)} \lambda_{5} + e^{i2\beta} \Delta_{\tilde{t}}^{(0)} \lambda_{5},$$

$$\lambda_{6,7} = \Delta_{\phi^{\pm}}^{(0)} \lambda_{6,7} + e^{i\alpha} \Delta_{\chi}^{(0)} \lambda_{6,7} + e^{i\beta} \Delta_{\tilde{t}}^{(0)} \lambda_{6,7}$$

 $\Delta^{(0)} \equiv$ correction without explicit CP violation

If $\Delta_{\chi}^{(0)} \gg \Delta_{\tilde{t}}^{(0)}, \Delta_{\phi^{\pm}}^{(0)}$, by rephasing, $\lambda_{5,6,7} \in \mathbf{R}$ and

$$e^{-i\alpha}\bar{m}_3^2 = e^{-i\alpha}m_3^2 + \Delta_{\chi}^{(0)}m_3^2 \equiv e^{-i\delta} \left|\bar{m}_3^2\right|$$

with
$$an oldsymbol{\delta} = -rac{m_3^2 \sin oldsymbol{lpha}}{m_3^2 \cos oldsymbol{lpha} + \Delta_\chi^{(0)} m_3^2}$$

N.B $\left| m_3^2 + \Delta_{\chi}^{(0)} m_3^2 \right| \ll m_3^2$ for transitional *CP* violation

for some parameter set, we have at $T\simeq T_C$

$$\Delta_{\tilde{t}}^{(0)} m_3^2 = 140.69, \qquad \Delta_{\chi}^{(0)} m_3^2 = -2356.73,$$

 $\langle \alpha \rangle$

so that even for $\alpha = 10^{-3}$,

$$\tan \delta = -\frac{(m_3^2 + \Delta_{\tilde{t}}^{(0)} m_3^2) \sin \alpha}{(m_3^2 + \Delta_{\tilde{t}}^{(0)} m_3^2) \cos \alpha + \Delta_{\chi}^{(0)} m_3^2}$$
$$\simeq \frac{10^{-3}}{6.8 \times 10^{-3}} = 0.147$$

 \implies only the lowest-energy bubble survives

- $\star \ \lambda_5 < 0 \Longleftrightarrow \Delta_{\chi} \lambda_5 < 0$ $\longrightarrow \Delta_{\chi} \bar{m}_3^2 < -1500 \ \mathrm{GeV}^2$
- * μA_t is restricted to have $\lambda_5 = \Delta_{\chi} \lambda_5 + \Delta_{\tilde{t}} \lambda_5 < 0$ $\longrightarrow \Delta_{\tilde{t}} \overline{m}_3^2$ is negative and bounded from below.
- * to have small \bar{m}_3^2 , the tree-level $m_3^2 \leq 2500 \text{ GeV}^2$ \longrightarrow too small m_h and m_A (< 67.5 GeV)

difficult to realize transitional CP violation with F < 0 in an acceptable MSSM

Improved perturbation theory [John, hep-ph/0010277]

no transitional CP violation for parameters with $v_C/T_C > 1$ and acceptable m_A

• 3d Lattice MC [Laine & Rummukainen, hep-lat/0009025]

no transitional CP violation for $m_h = 105 \text{GeV}$, $m_A = 105 \text{GeV}$, $\tan \beta = 12$, $m_{\tilde{q}_L} = 1 \text{TeV}$

 NMSSM (perturbation) [Huber & Schmidt, hep-ph/000312-rev.; hep-ph/0101249]

$$W = \lambda S H_u H_d + \frac{k}{3}S^3 + \mu H_u H_d + rS$$

S : gauge singlet

 $\langle S \rangle \in \mathbb{C}$ can also violate CP. Transitional CP violation does occur for $\mu = 212.6 \text{GeV}$, $m_{\tilde{q}_L} = 278.1 \text{GeV}$, $\tan \beta = -5$, $A_t = -219.8 \text{GeV}$. Both θ and $\theta_S = \text{Arg}S$ has nontrivial values in the transient region.

Motivation

in an inflationary scenario,

all the particles in the universe reheating after the de Sitter phase decay of coherently oscillating classical scalar field: $\phi(t)$ inflaton

It is natural that B was also generated in this era of particle creation.

process of reheating

- perturbative decay of $\phi(t)$ classical ϕ -field = zero-momentum ϕ -quanta
- preheating by parametric resonance particle creation in an oscillating background [Kofman, Linde, Starobinsky, PRL73 ('94); PRD56 ('97)]

 $\chi(x)$: scalar field interacting with $\phi(t)$

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) + \frac{1}{2} \partial_{\mu} \chi \partial^{\mu} \chi - \frac{1}{2} g^2 \phi^2 \chi^2 + \cdots$$

just after the de Sitter phase,

$$\frac{H(t)^2}{3m_P} = \frac{8\pi}{3m_P} \left(\rho_\phi + \rho_\chi + \cdots\right) \simeq \frac{8\pi}{3m_P} \left(\frac{1}{2}\dot{\phi}^2 + V(\phi)\right)$$
$$\ddot{\phi}(t) + 3H(t)\dot{\phi}(t) + \frac{\partial V(\phi)}{\partial \phi(t)} = 0$$

$$\implies \phi(t) = \Phi(t) \sin(mt) \propto \frac{1}{t} \sin(mt)$$

where $V(\phi) \simeq \frac{1}{2}m^2\phi^2$

wave equation for a mode $\chi_k(t)$:

$$\ddot{\boldsymbol{\chi}}_{\boldsymbol{k}}(t) + 3H(t)\dot{\boldsymbol{\chi}}_{\boldsymbol{k}}(t) + \left(\frac{k^2}{a^2} + g^2\Phi^2(t)\sin^2(mt)\right)\boldsymbol{\chi}_{\boldsymbol{k}}(t) = 0$$

Putting a(t) = 1, z = mt,

$$\chi_k''(z) + (A_k - 2q\cos 2z)\chi_k(z) = 0$$

where

$$A_{k} \equiv \frac{k^{2}}{m^{2}} + \frac{g^{2}\Phi^{2}}{2m^{2}} = \frac{k^{2}}{m^{2}} + 2q, \qquad q \equiv \frac{g^{2}\Phi^{2}}{4m^{2}}$$

Mathieu equation

 n_k changes only at t where $\Phi(t) = 0$

 $\Leftrightarrow \dot{\omega}(t) \gtrsim \omega^2(t) \text{ with } \omega(t) = \sqrt{k^2 + g^2 \Phi^2(t) \sin^2(mt)}$ $\begin{vmatrix} \chi_k(t) \\ n_k(t) \end{vmatrix} \ \text{exponentially increase with } t \text{ stepwise.} \\ \implies \text{seccessive scatterings by a periodic potential} \\ \implies \text{descent equation for } n_k \end{aligned}$

We must take into account

- expansion of the universe $a(t) \longrightarrow$ stochastic resonance
- back reaction of the generated χ -particles $\begin{cases}
 \rho \simeq \rho_{\phi} \rightarrow \rho_{\chi} & \text{:damping the oscillation} \\
 m_{\phi}^{2} \simeq m^{2} + g^{2} \langle \chi^{2} \rangle & \text{:increase } \phi\text{-frequency}
 \end{cases}$

• rescattering of χ -particle by ϕ -particle $\Delta m_{\chi}^2(k) = g^2 \langle \delta \phi^2 \rangle_k > \text{resonance width}$ \implies terminates the resonance

example:

$$m = 10^{-6} m_P$$
, $\Phi_0 = m_P/5$

the resonance ends after about 10 ϕ -oscillations for $g = 10^{-3 \sim -1}$.

state after the preheating

• large occupation number of χ with small k

*Charge Generation

[K.F., Otsuki, Kakuto, Toyoda, hep-ph/0010266]

$$\mathcal{L} = \partial_{\mu} \chi_{a}^{*} \partial^{\mu} \chi_{a} - g_{a}^{2} \phi^{2}(t) \chi_{a}^{*} \chi_{a}$$
$$- \chi_{a}^{*} V_{ab}(t) \chi_{b} - \frac{1}{2} \left(\chi_{a} W_{ab}(t) \chi_{b} + \text{c.c.} \right),$$

We treat CP-violating V_{ab} and W_{ab} as perturbations. — picture of successive scattering at zero of $\phi(t)$: t_j

for $t \in (t_{j-1}, t_j)$

$$\begin{split} \chi_{a}(x) &= \int d^{3}\boldsymbol{k} \left(a_{a\boldsymbol{k}}^{j} f_{a\boldsymbol{k}}^{j}(t) e^{i\boldsymbol{k}\boldsymbol{x}} + b_{a\boldsymbol{k}}^{j\dagger} f_{a\boldsymbol{k}}^{j*}(t) e^{-i\boldsymbol{k}\boldsymbol{x}} \right) \\ \text{relation between } f_{a\boldsymbol{k}}^{0}(t) \text{ and } f_{a\boldsymbol{k}}^{j}(t) \\ &\implies \begin{cases} a_{a\boldsymbol{k}}^{j} = a_{b\boldsymbol{k}}^{0} \alpha_{ba}^{j} + b_{b\boldsymbol{k}}^{0\dagger} \tilde{\beta}_{ba}^{j} \\ b_{a\boldsymbol{k}}^{j\dagger} = a_{b\boldsymbol{k}}^{0} \beta_{ba}^{j} + b_{b\boldsymbol{k}}^{0\dagger} \tilde{\alpha}_{ba}^{j} \end{cases} \text{ Bogoliubov trf.} \end{split}$$

CP violation $\implies \alpha^{j}_{ab} \neq \tilde{\alpha}^{j}_{ab}$ and $\beta^{j}_{ab} \neq \tilde{\beta}^{j}_{ab}$

relations among the Bogoliubov coefficients:

 $\alpha^{j\dagger}\alpha^j - \tilde{\beta}^{j\dagger}\tilde{\beta}^j = \tilde{\alpha}^{j\dagger}\tilde{\alpha}^j - \beta^{j\dagger}\beta^j = 1, \quad \beta^{j\dagger}\alpha^j - \tilde{\alpha}^{j\dagger}\tilde{\beta}_j = 0$

generated particle number and charge densities after j zeros;

$$\begin{split} n_{k}^{j} &= \frac{1}{V} \langle 0^{0} | \sum_{a=1}^{n} \left(a_{ak}^{j\dagger} a_{ak}^{j} + b_{ak}^{j\dagger} b_{ak}^{j} \right) | 0^{0} \rangle \\ &= \operatorname{Tr} \left(\tilde{\beta}^{j\dagger} \tilde{\beta}^{j} + \beta^{j\dagger} \beta^{j} \right) \end{split}$$

$$\begin{aligned} j_{Qk}^{j} &= \frac{1}{V} \langle 0^{0} | \sum_{a=1}^{n} Q_{a} \left(a_{ak}^{j\dagger} a_{ak}^{j} - b_{ak}^{j\dagger} b_{ak}^{j} \right) | 0^{0} \rangle \\ &= \operatorname{Tr} \left[Q \left(\tilde{\beta}^{j\dagger} \tilde{\beta}^{j} - \beta^{j\dagger} \beta^{j} \right) \right] \end{aligned}$$

N.B. If χ_a is one-component, $\left|\beta^j\right|^2 = \left|\tilde{\beta}^j\right|^2$. $\therefore j_k^j = 0$

example

2-component
$$\chi$$
, $m_1=m_2$, $V_{11}=V_{22}$, $W_{ab}=0$

U(1)-sym.: $\chi_a \mapsto e^{i\alpha}\chi_a$ and discrete sym.: $\chi_1 \leftrightarrow \chi_2$

We found descent equations for the Bogoliubov coefficients $\left(\alpha^{j},\beta^{j},\tilde{\alpha}^{j},\tilde{\beta}^{j}\right)$ and $\left(\alpha^{j+1},\beta^{j+1},\tilde{\alpha}^{j+1},\tilde{\beta}^{j+1}\right)$.

$$\implies \begin{cases} n_{k}^{j} = \sum_{a,b=1}^{2} \left(\left| \beta_{ab}^{j} \right|^{2} + \left| \tilde{\beta}_{ab}^{j} \right|^{2} \right) \\ j_{1k}^{j} = \left| \tilde{\beta}_{11}^{j} \right|^{2} + \left| \tilde{\beta}_{21}^{j} \right|^{2} - \left| \beta_{11}^{j} \right|^{2} - \left| \beta_{21}^{j} \right|^{2} & \text{charge of } \chi_{1} \\ j_{2k}^{j} = \left| \tilde{\beta}_{12}^{j} \right|^{2} + \left| \tilde{\beta}_{22}^{j} \right|^{2} - \left| \beta_{12}^{j} \right|^{2} - \left| \beta_{22}^{j} \right|^{2} & \text{charge of } \chi_{2} \end{cases}$$

 $\kappa \equiv \frac{k}{k_*} = \frac{k}{\sqrt{g \Phi m}} \lesssim \frac{1}{\sqrt{\pi}} \quad \Longrightarrow \text{ in the resonance band}$

We choose

$$V_{11}(t) = -\frac{2g^2 l_1 \Phi^2}{\cosh^2[m(t-t_j)/\sqrt{2}]}$$
$$V_{12}(t) = -\frac{2g^2 l_2 \Phi^2 e^{i\theta(t)}}{\cosh^2[m(t-t_j)/\sqrt{2}]}$$

with

$$\theta(t) = \frac{\theta_0}{1 + e^{m(t-t_j)/\sqrt{2}}}$$

time evolution: $q = 200, l_1 = 0.01, l_2 = 0.02, \theta_0 = 10^{-3}$

densities at j = 10 for various θ_0

total number and charge densities

$$n = \int d^3 \mathbf{k} \, n_k = 8\sqrt{2}\pi \, m^3 \, q^{3/4} \int_0^\infty d\kappa \, \kappa^2 \, n_k,$$

$$j_1 = 8\sqrt{2}\pi \, m^3 \, q^{3/4} \int_0^\infty d\kappa \, \kappa^2 \, j_{1k} = -j_2$$

θ_0	$\int d\kappa \kappa^2 n_k$	$\int d\kappa \kappa^2 j_{1k}$
10^{-3}	130.5096	-1.609334×10^{-2}
10^{-2}	130.5156	-1.544579×10^{-1}
10^{-1}	131.1163	-1.537716
π	990.7411	-50.84228

Applications — speculation

"charge" =
$$\begin{cases} B \\ L, Y, \cdots \stackrel{\text{sphaleron}}{\Longrightarrow} B \end{cases}$$

oscillating $\phi(t)$ with (at least) 2 complex scalar fields: χ_a

$$= \left\{ egin{array}{ll} {
m inflaton} & -T_{
m rh}, \ \delta T/T \ {
m Affleck-Dine \ scalar} \end{array}
ight.$$

e.g.

- a variant of EW hybrid inflation [Garcia-Bellido et al., PRD60] $\chi_a = 2$ Higgs doublet "charge" = Y, $T_{\rm rh} \gtrsim T_{\rm EW}$ (sphaleron) — CP violation in the scalar sector
- Affleck-Dine *B* or *L*-genesis initial $\langle \tilde{q} \rangle \propto e^{i\omega t} \longrightarrow j_B$, CP viol.

Even when $\mathrm{Im}\langle \tilde{q}\rangle\simeq 0$, B can be generated $\chi_a=$ (quantum) \tilde{q} , \tilde{l}

Summary

★ Electroweak Baryogenesis

- depends on models checked by (future) experiments

- minimal SM rejected: first-order EWPT, CP violation
- ⊳ MSSM:

first-order EWPT for small (allowed) m_h and m_A explicit CPV is needed

- other extended models such as NMSSM
- ★ Other Mechanism

not relying on 1st order EWPT

- ⊳ GUTs
- Leptogenesis
- ▷ Affleck-Dine
- ▷ Inflationary
- ⊳ ???