Phase Transitions in the NMSSM

K. Funakubo, Saga Univ. June 28, '05 @Nagoya University

1. Introduction

Baryon Asymmetry of the Universe:

$$\frac{n_B}{s} \equiv \frac{n_b - n_{\bar{b}}}{s} \simeq (0.48 - 0.98) \times 10^{-10}$$

 \leftarrow BBN, consistent with WMAP data

Sakharov's Conditions

for baryogenesis

- 1. Baryon number violation
- 2. C and CP violation
- 3. Out of equilibrium

scenarios to explain the BAU

- GUTs
- Affleck-Dine
- Leptogenesis

ŝ

* **EW Baryogenesis** — physics within our reach

Anomalous (B + L)-nonconservation in EW theory

suppresed at T = 0 by $e^{-2S_{\text{instanton}}} \simeq 10^{-164}$ — free from proton decay problem at $T < T_C$; $\Gamma_{\text{sph}}^{(\text{br})} \simeq T e^{-E_{\text{sph}}/T}$ at $T > T_C$; $\Gamma_{\text{sph}}^{(\text{sym})} \simeq \kappa \alpha_W^4 T$ ($\kappa \simeq 1.1$)

mfp (time scale) of elementary processes: $\lambda \cdot \sigma = \frac{1}{n}$ $m \ll T \Rightarrow \lambda \simeq \overline{t} = \text{mean free time}$ σ

For relativistic particles at T,

$$\sigma \simeq \frac{\alpha^2}{s} \simeq \frac{\alpha^2}{T^2} \Longrightarrow \left(\lambda \simeq \frac{10}{gT^3} \left(\frac{\alpha^2}{T^2} \right)^{-1} = \frac{10}{g\alpha^2 T} \right)^{-1}$$

If $v(T_C) \ll 200$ GeV (eg. 2nd order EWPT), $\exists T_{\text{dec}}, s.t.$ $T_{\text{dec}} < T < T_C \implies \Gamma_{\text{sph}}^{(b)}(T) > H(T)$

wash-out of B + L even in the broken phase

To have nonzero BAU,

(i) we must have B - L before the sphaleron process decouples, or

(ii) B + L must be created at the first-order EWPT, and the sphaleron process must decouple immediately after that.

N.B.

 $\Delta(B+L) \neq 0$ process is in equilibrium, for $T_C \simeq 100 \text{GeV} < T < 10^{12} \text{GeV}$

If $\Delta L \neq 0$ process is in equilibrium in this range of $T \Rightarrow B = L = 0!$

To leave $B \neq 0$, $\Gamma_{\Delta L \neq 0} < H(T)$ for $T \in [T_C, 10^{12} \text{GeV}]$.

 \implies constraints on models with $\Delta L \neq 0$ processes.

e.g., lower bound on m_N in the seesaw model \rightarrow upper bound on $m_{\nu} < 0.8 \text{GeV}$

... All the particles of the SM are in *kinetic* equilibrium.

nonequilibrium state \Leftarrow

study of the $\ensuremath{\mathsf{EWPT}}$

★ static properties ← effective potential = free energy density

$$V_{\text{eff}}(\boldsymbol{v};T) = -\frac{1}{V}T\log Z = -\frac{1}{V}\log \operatorname{Tr}\left[e^{-H/T}\right]_{\langle \boldsymbol{\phi} \rangle = \boldsymbol{v}}$$

* dynamics — formation and motion of the bubble wall when 1st order PT

 $V_{\text{eff}}(v;T) \leftarrow$ paramters of the model \Rightarrow mass, coupling of the Higgs bosons

contents

2. Higgs mass and the EWPT in the MSM

3. EWPT in the MSSM

Higgs mass and couplings

4. Phase Transitions in the NMSSM

similarity and difference between the MSSM and the NMSSM

5. Summary

2. Higgs mass and the EWPT in the MSM

perturbation at the 1-loop level

$$V_{\text{eff}}(\varphi;T) = -\frac{1}{2}\mu^2\varphi^2 + \frac{\lambda}{4}\varphi^4 + 2Bv_0^2\varphi^2 + B\varphi^4 \left[\log\left(\frac{\varphi^2}{v_0^2}\right) - \frac{3}{2}\right] + \bar{V}(\varphi;T)$$

where

$$B = \frac{3}{64\pi^2 v_0^4} (2m_W^4 + m_Z^4 - 4m_t^4),$$

$$\bar{V}(\varphi;T) = \frac{T^4}{2\pi^2} \left[6I_B(a_W) + 3I_B(a_Z) - 6I_F(a_t) \right], \qquad (a_A = m_A(\varphi)/T)$$
$$I_{B,F}(a^2) \equiv \int_0^\infty dx \, x^2 \log\left(1 \mp e^{-\sqrt{x^2 + a^2}}\right).$$

high-temperature expansion $[m/T\ll 1]$

$$I_B(a^2) = -\frac{\pi^4}{45} + \frac{\pi^2}{12}a^2 - \frac{\pi}{6}(a^2)^{3/2} - \frac{a^4}{16}\log\frac{\sqrt{a^2}}{4\pi} - \frac{a^4}{16}\left(\gamma_E - \frac{3}{4}\right)\frac{a^4}{2} + O(a^6)$$
$$I_F(a^2) = \frac{7\pi^4}{360} - \frac{\pi^2}{24}a^2 - \frac{a^4}{16}\log\frac{\sqrt{a^2}}{\pi} - \frac{a^4}{16}\left(\gamma_E - \frac{3}{4}\right) + O(a^6)$$

For $T > m_W, m_Z, m_{\underline{t}}$

$$V_{\rm eff}(\varphi;T) \simeq D(T^2 - T_0^2)\varphi^2 - ET\varphi^3 + \frac{\lambda_T}{4}\varphi^4$$

where

$$D = \frac{1}{8v_0^2} (2m_W^2 + m_Z^2 + 2m_t^2), \qquad E = \frac{1}{4\pi v_0^3} (2m_W^3 + m_Z^3) \sim 10^{-2}$$
$$\lambda_T = \lambda - \frac{3}{16\pi^2 v_0^4} \left(2m_W^4 \log \frac{m_W^2}{\alpha_B T^2} + m_Z^4 \log \frac{m_Z^2}{\alpha_B T^2} - 4m_t^4 \log \frac{m_t^2}{\alpha_F T^2} \right)$$
$$T_0^2 = \frac{1}{2D} (\mu^2 - 4Bv_0^2), \qquad \log \alpha_{F(B)} = 2\log(4)\pi - 2\gamma_E$$

At T_C , ^{\exists}degenerate minima: $\varphi_C = \frac{2E T_C}{\lambda_{T_C}}$ $\Gamma_{\rm sph}^{(\rm br)} < H(T_C) \iff \frac{\varphi_C}{T_C} \gtrsim 1 \implies$ upper bound on λ $[m_H = \sqrt{2\lambda}v_0]$ $m_H \lesssim 46 \text{GeV} \implies \text{MSM is excluded}$

★ Monte Carlo simulations

effective fermion mass : $m_f(T) \sim O(T) \leftarrow \text{nonzero modes}$

... simulation only with the bosons

QFT on the lattice $\begin{cases} \text{scalar fields:} & \phi(x) \text{ on the sites} \\ \text{gauge fields:} & U_{\mu}(x) \text{ on the links} \end{cases}$

$$Z = \int \left[d\phi \, dU_{\mu} \right] \exp \left\{ -S_E[\phi, U_{\mu}] \right\}$$

• 3-dim. SU(2) system with a Higgs doublet and a triplet time-component of U_{μ} [Laine & Rummukainen, hep-lat/9809045]

• 4-dim. SU(2) system with a Higgs doublet [Csikor, hep-lat/9910354] EWPT is first order for $m_h < 66.5 \pm 1.4 \text{GeV}$

Both the simulations found end-point of EWPT at

$$m_h = \begin{cases} 72.3 \pm 0.7 \text{ GeV} \\ 72.1 \pm 1.4 \text{ GeV} \end{cases} \Rightarrow \text{ no PT (cross-over) in the MSM !} \end{cases}$$

3. EWPT in the MSSM

superpotential: $W = y_b Q_L B_R^c H_d - y_t Q_L T_R^c H_u - \mu H_d H_u$

2 Higgs doublets:
$$H_d \ni \Phi_d = \begin{pmatrix} \phi_d^0 \\ \phi_d^- \end{pmatrix}, \qquad H_u \ni \Phi_u = \begin{pmatrix} \phi_u^+ \\ \phi_d^0 \end{pmatrix}$$

Higgs potential

$$V_{0} = m_{1}^{2} \Phi_{d}^{\dagger} \Phi_{d} + m_{2}^{2} \Phi_{u}^{\dagger} \Phi_{u} - \left(m_{3}^{2} \epsilon_{ij} \Phi_{d}^{i} \Phi_{u}^{j} + \text{h.c.}\right) + \frac{g_{2}^{2} + g_{1}^{2}}{8} \left(\Phi_{d}^{\dagger} \Phi_{d} - \Phi_{u}^{\dagger} \Phi_{u}\right)^{2} + \frac{g_{2}^{2}}{2} \left|\Phi_{d}^{\dagger} \Phi_{u}\right|^{2}$$

all the parameters are real: no CP violation $m_{1,2}^2 = m_{\text{soft}}^2 + |\mu|^2 \leftrightarrow v_0 \text{ and } \tan \beta \quad \text{by} \quad \frac{\partial V_0}{\partial v_d} = \frac{\partial V_0}{\partial v_u} = 0$

The Higgs mass is not completely a free parameter.

After EWSB $\longrightarrow \phi_d^0 = \frac{1}{\sqrt{2}}(v_d + h_d + ia_d), \quad \phi_u^0 = \frac{1}{\sqrt{2}}e^{i\theta}(v_u + h_u + ia_u)$ vacuum: $v_0 = \sqrt{v_d^2 + v_u^2} = 246 \text{GeV}, \tan \beta = \frac{v_u}{v_d}$ 1 Nambu-Goldstone mode in (a_d, a_u) and 1 in (ϕ_d^+, ϕ_u^-) \implies physical modes: 3 neutral (h, H, A), 1 charged (H^{\pm})

tree-level masses

$$m_{h,H}^{2} = \frac{1}{2} \left[m_{Z}^{2} + m_{A}^{2} \mp \sqrt{(m_{Z}^{2} + m_{A}^{2})^{2} - 4m_{Z}^{2}m_{Z}^{2}\cos^{2}(2\beta)} \right],$$

$$m_{A}^{2} = \frac{\operatorname{Re}(m_{3}^{2}e^{i\theta})}{\sin\beta\cos\beta}, \qquad m_{H^{\pm}}^{2} = m_{A}^{2} + m_{W}^{2}$$

$$\to m_{h} \le \min\{m_{Z}, m_{A}\}, \quad m_{H} \ge \max\{m_{Z}, m_{A}\}$$

radiative collections from loops of the top quarks and squarks

 $\longrightarrow m_h \lesssim 135 \text{GeV}$ [Okada, et al. PTP85 ('91) 1]

One-loop Effective potential (T = 0)

$$V_{\text{eff}} = V_0 + \frac{N_C}{32\pi^2} \sum_{q=t,b} \left[\sum_{j=1,2} \left(\bar{m}_{\tilde{q}_j}^2 \right)^2 \left(\log \frac{\bar{m}_{\tilde{q}_j}^2}{M^2} - \frac{3}{2} \right) - 2 \left(\bar{m}_q^2 \right)^2 \left(\log \frac{\bar{m}_q^2}{M^2} - \frac{3}{2} \right) \right]$$

 $\bar{m}^2(v_d, v_u, \theta)$: field-dependent mass

 $mass^2$ at the one-loop level

$$\mathcal{M}^{2} = \begin{pmatrix} \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial h_{d}^{2}} \right\rangle & \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial h_{d} \partial h_{u}} \right\rangle & \frac{1}{\cos \beta} \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial h_{d} \partial a_{u}} \right\rangle \\ \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial h_{d} \partial h_{u}} \right\rangle & \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial h_{u}^{2}} \right\rangle & \frac{1}{\sin \beta} \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial h_{u} \partial a_{d}} \right\rangle \\ \frac{1}{\cos \beta} \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial h_{d} \partial a_{u}} \right\rangle & \frac{1}{\sin \beta} \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial h_{u} \partial a_{d}} \right\rangle & \frac{1}{\sin \beta \cos \beta} \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial a_{d} \partial a_{u}} \right\rangle \end{pmatrix} \\ m_{H^{\pm}}^{2} = \frac{1}{\sin \beta \cos \beta} \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial \phi_{d}^{+} \partial \phi_{u}^{-}} \right\rangle & \left\langle \cdots \right\rangle = \text{values at the vacuum}$$

CP-conserving $\Rightarrow \mathcal{M}_{33}^2 = m_A^2$ CP violation in the squark sector $\propto \text{Im}(\mu A_q e^{i\theta}) \Rightarrow \mathcal{M}_{13}, \mathcal{M}_{23} \neq 0$

***** Electroweak phase transition

$$V_{\text{eff}}(\boldsymbol{v};T) = V_{\text{eff}}(\boldsymbol{v};T) + 6 \sum_{q=t,b} \sum_{j=1,2} \frac{T^4}{2\pi^2} I_B\left(\frac{\bar{m}_{\tilde{\boldsymbol{q}}_j}}{T}\right) + \cdots,$$

where $m^2_{\tilde{t}_j}$ is the eigenvalues of

$$\mathcal{M}_{\tilde{t}}^2 = \begin{pmatrix} m_{\tilde{t}_L}^2 + \left(\frac{g_1^2}{24} - \frac{g_2^2}{8}\right) (v_u^2 - v_d^2) + \frac{y_t^2}{2} v_u^2 & \frac{y_t}{\sqrt{2}} \left(\mu v_d + A(v_2 - iv_3)\right) \\ * & m_{\tilde{t}_R}^2 - \frac{g_1^2}{6} (v_u^2 - v_d^2) + \frac{y_t^2}{2} v_u^2 \end{pmatrix}$$

light stop scenario

[de Carlos & Espinosa, NPB '97]

$$m^2_{\tilde{t}_L} = 0$$
 or $m^2_{\tilde{t}_R} = 0 \Longrightarrow$ smaller eigenvalue: $m^2_{\tilde{t}_1} \sim O(v^2)$

 $\therefore \text{ high-}T \text{ expansion: } \Delta_{\tilde{t}} V_{\text{eff}}(\boldsymbol{v};T) \Rightarrow -3\frac{T}{6\pi}(m_{\tilde{t}_1}^2)^{3/2} \sim -T\boldsymbol{v}^3 \longrightarrow 1 \text{st order PT}$

more effective for larger y_t — smaller $\tan\beta$

An example: $\tan \beta = 6$, $m_h = 82.3 \text{GeV}$, $m_A = 118 \text{GeV}$, $m_{\tilde{t}_1} = 168 \text{GeV}$

$$T_C = 93.4 \text{GeV}, v_C = 129 \text{GeV}$$
 [KF, PTP101('99)]

★ Lattice MC studies

- 3d reduced model strong 1st order for $m_{\tilde{t}_1} \lesssim m_t$ and $m_h \leq 110 {\rm GeV}$
- 4d model

with SU(3), SU(2) gauge bosons, 2 Higgs doublets, stops, sbottoms

 $A_{t,b} = 0$, $\tan \beta \simeq 6$

[Laine et al. hep-lat/9809045]

106 104102 $\begin{bmatrix} 100 \\ ge \end{bmatrix}_{\substack{n \\ 96}} \begin{bmatrix} ge \\ ge \end{bmatrix}$ m_h $v_{\rm C} / T_{\rm C} =$ 96 94 $\begin{array}{l} m_{\tilde{t}_L} = 440 \; \mathrm{GeV} \\ m_{\tilde{t}_L} = 590 \; \mathrm{GeV} \\ m_{\tilde{t}_L} = 630 \; \mathrm{GeV} \end{array}$ 9290 165170175180 $m_{\tilde{t}_R}$ [GeV]

$$\begin{split} m_A &= 500 \,\, {\rm GeV} \\ v_C/T_C > 1 \\ {\rm below \ the \ steeper \ lines} \\ & \Downarrow \\ {\rm max.} \,\, m_h = 103 \pm 4 \,\, {\rm GeV} \\ {\rm for \ } m_{\tilde{t}_L} \simeq 560 \,\, {\rm GeV} \end{split}$$

 \rightarrow agreement with the perturbation theory within the errors

3. EWPT in the NMSSM

$$W = \epsilon_{ij} \left(y_b H_d^i Q^j B - y_t H_u^i Q^j T + y_l H_d^i L^j E - \lambda N H_d^i H_u^j \right) - \frac{\kappa}{3} N^3$$

 $\lambda \left< N \right> \sim \mu$ in the MSSM

$$\mathcal{L}_{\text{soft}} \ni -m_N^2 n^* n + \left[\lambda A_\lambda n H_d H_u + \frac{\kappa}{3} A_\kappa n^3 + \text{h.c.} \right].$$

order parameters: $\langle \Phi_d \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v_{0d} \\ 0 \end{pmatrix}, \quad \langle \Phi_u \rangle = \frac{e^{i\theta_0}}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{0u} \end{pmatrix}, \quad \langle n \rangle = \frac{e^{i\varphi_0}}{\sqrt{2}} v_{0n}$

tree-level Higgs potential:

$$V_{0} = m_{1}^{2} \Phi_{d}^{\dagger} \Phi_{d} + m_{2}^{2} \Phi_{u}^{\dagger} \Phi_{u} + m_{N}^{2} n^{*} n - \left(\lambda A_{\lambda} \epsilon_{ij} n \Phi_{d}^{i} \Phi_{u}^{j} + \frac{\kappa}{3} A_{\kappa} n^{3} + \text{h.c.}\right)$$

+
$$\frac{g_{2}^{2} + g_{1}^{2}}{8} \left(\Phi_{d}^{\dagger} \Phi_{d} - \Phi_{u}^{\dagger} \Phi_{u}\right)^{2} + \frac{g_{2}^{2}}{2} \left|\Phi_{d}^{\dagger} \Phi_{u}\right|^{2}$$

+
$$|\lambda|^{2} n^{*} n \left(\Phi_{d}^{\dagger} \Phi_{d} + \Phi_{u}^{\dagger} \Phi_{u}\right) + \left|\lambda \epsilon_{ij} \Phi_{d}^{i} \Phi_{u}^{j} + \kappa n^{2}\right|^{2}$$

1. 5 neutral and 1 charged scalars (3 scalar and 2 pseudoscalar when CP cons.)

The lightest Higgs scalar can escape from the lower bound 114GeV, because of small coupling to Z, W caused by large mixing among 3 scalars. [Miller, et al. NPB 681]

— "Light Higgs Scenario" —

2. CP violation at the tree level: Im $(\lambda A_{\lambda} e^{i(\theta+\varphi)})$, Im $(\kappa A_{\kappa} e^{3i\varphi})$, Im $(\lambda \kappa^* e^{i(\theta-2\varphi)})$

3. $v_n \to \infty$ with λv_n and κv_n fixed \Longrightarrow MSSM [Ellis, et al, PRD 39] \longrightarrow new features expected for $v_n = O(100)$ GeV

★ study of the Higgs spectrum and couplings without/with CP violation [KF and Tao, PTP 113 ('05)]

* study of the EWPT without/with CP violation [KF, Toyoda and Tao, hep-ph/0501052]

 \star sphaleron solution

[KF, Kakuto, Tao, Toyoda, hep-ph/0506156]

mass matrix of the neutral Higgs bosons

$$\mathcal{M}^{2} \equiv \begin{pmatrix} \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial h_{i} \partial h_{j}} \right\rangle & \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial h_{i} \partial a_{j}} \right\rangle \\ \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial a_{i} \partial h_{j}} \right\rangle & \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial a_{i} \partial a_{j}} \right\rangle \end{pmatrix} \text{ extract NG modes} \begin{pmatrix} \mathcal{M}_{S}^{2} & \mathcal{M}_{SP}^{2} \\ \left(\mathcal{M}_{SP}^{2} \right)^{T} & \mathcal{M}_{P}^{2} \end{pmatrix}$$

$$\mathcal{M}_S^2: 3 \times 3, \qquad \mathcal{M}_P^2: 2 \times 2. \qquad \mathcal{M}_{SP}^2: 3 \times 2$$

where the basis is (h_d, h_u, h_n, a, a_n) ,

$$\mathcal{M}_{SP}^2 \propto \begin{cases} \operatorname{Im} \left(\lambda \kappa^* e^{i(\theta_0 - 2\varphi_0)} \right) & \text{at the tree level} \\ \operatorname{Im} \left(\lambda v_n A_{t,b} e^{i(\theta_0 + \varphi_0)} \right) & \text{at the one-loop level} \end{cases}$$

charged Higgs mass

$$m_{H^{\pm}}^{2} = \frac{1}{\sin\beta_{0}\cos\beta_{0}} \left\langle \frac{\partial^{2}V_{\text{eff}}}{\partial\phi_{d}^{+}\partial\phi_{u}^{-}} \right\rangle = \left(m_{H^{\pm}}^{2}\right)_{\mu=\lambda v_{n}e^{i\varphi_{0}}/\sqrt{2}}^{\text{MSSM}}$$

At the tree-level,

$$\mathcal{M}_{S}^{2} = \begin{pmatrix} \left(R_{\lambda} - \frac{\mathcal{R}v_{n}}{2}\right)v_{n}\tan\beta + m_{Z}^{2}\cos^{2}\beta & -\left(R_{\lambda} - \frac{\mathcal{R}v_{n}}{2}\right)v_{n} - m_{Z}^{2}\sin\beta\cos\beta + |\lambda|^{2}v_{d}v_{u} & -R_{\lambda}v_{u} + \mathcal{R}v_{u}v_{n} + |\lambda|^{2}v_{d}v_{n} \\ & \ddots & \left(R_{\lambda} - \frac{\mathcal{R}v_{n}}{2}\right)v_{n}\cot\beta + m_{Z}^{2}\sin^{2}\beta & -R_{\lambda}v_{d} + \mathcal{R}v_{d}v_{n} + |\lambda|^{2}v_{u}v_{n} \\ & \ddots & & R_{\lambda}\frac{v_{d}v_{u}}{v_{n}} + 3R_{\kappa}v_{n} + 2\left|\kappa\right|^{2}v_{n}^{2} \end{pmatrix},$$

$$\begin{split} \mathcal{M}_{P}^{2} &= \begin{pmatrix} \left(R_{\lambda} - \frac{1}{2} \mathcal{R} v_{n} \right) \frac{v_{n}}{\sin \beta \cos \beta} & (R_{\lambda} + \mathcal{R} v_{n}) v_{0} \\ (R_{\lambda} + \mathcal{R} v_{n}) v_{0} & R_{\lambda} \frac{v_{0}^{2} \sin \beta \cos \beta}{v_{n}} + 3R_{\kappa} v_{n} - 2\mathcal{R} v_{d} v_{u} \end{pmatrix}, \\ \mathcal{M}_{SP}^{2} &= \begin{pmatrix} 0 & \frac{3}{2} \sin \beta \\ 0 & \frac{3}{2} \cos \beta \\ -\frac{1}{2} & -2 \sin \beta \cos \beta \end{pmatrix} \mathcal{I} v_{0} v_{n}. \end{split}$$

$$R_{\lambda} = \frac{1}{\sqrt{2}} \operatorname{Re} \left(\lambda A_{\lambda} e^{i(\theta_{0} + \varphi_{0})} \right), \qquad I_{\lambda} = \frac{1}{\sqrt{2}} \operatorname{Im} \left(\lambda A_{\lambda} e^{i(\theta_{0} + \varphi_{0})} \right)$$
$$R_{\kappa} = \frac{1}{\sqrt{2}} \operatorname{Re} \left(\kappa A_{\kappa} e^{3i\varphi_{0}} \right), \qquad I_{\kappa} = \frac{1}{\sqrt{2}} \operatorname{Im} \left(\kappa A_{\kappa} e^{3i\varphi_{0}} \right),$$
$$\mathcal{R} = \operatorname{Re} \left(\lambda \kappa^{*} e^{i(\theta_{0} - 2\varphi_{0})} \right), \qquad \mathcal{I} = \operatorname{Im} \left(\lambda \kappa^{*} e^{i(\theta_{0} - 2\varphi_{0})} \right)$$

— independent of phase convention

,

We have used the tadpole conditions: $\left\langle \frac{\partial V_{\text{eff}}}{\partial h_i} \right\rangle = \left\langle \frac{\partial V_{\text{eff}}}{\partial a_i} \right\rangle = 0$ (i = d, u, n)

$$m_{1}^{2} = \left(R_{\lambda} - \frac{1}{2}Rv_{0n}\right)v_{0n}\tan\beta_{0} - \frac{1}{2}m_{Z}^{2}\cos(2\beta_{0}) - \frac{|\lambda|^{2}}{2}(v_{0n}^{2} + v_{0u}^{2}) + \cdots$$

$$m_{2}^{2} = \left(R_{\lambda} - \frac{1}{2}Rv_{0n}\right)v_{0n}\cot\beta_{0} + \frac{1}{2}m_{Z}^{2}\cos(2\beta_{0}) - \frac{|\lambda|^{2}}{2}(v_{0n}^{2} + v_{0d}^{2}) + \cdots$$

$$m_{N}^{2} = \left(R_{\lambda} - Rv_{0n}\right)\frac{v_{0d}v_{0u}}{v_{0n}} + R_{\kappa}v_{0n} - \frac{|\lambda|^{2}}{2}(v_{0d}^{2} + v_{0u}^{2}) - |\kappa|^{2}v_{0n}^{2} + \cdots$$

$$I_{\lambda} = \frac{1}{2}\mathcal{I}v_{0n} + \cdots, \qquad I_{\kappa} = -\frac{3}{2}\mathcal{I}\frac{v_{0d}v_{0u}}{v_{0n}}$$

We shall use $m_{H^{\pm}}$ instead of R_{λ} :

$$m_{H^{\pm}}^{2} = m_{W}^{2} - \frac{1}{2} |\lambda|^{2} v^{2} + (2R_{\lambda} - \mathcal{R}v_{0n}) \frac{v_{0n}}{\sin 2\beta_{0}} + \cdots$$

Definition of the couplings

gauge vs mass eigenstates:
$$\begin{pmatrix} h_d \\ h_u \\ h_n \\ a \\ a_n \end{pmatrix} = \mathcal{O} \begin{pmatrix} H_1 \\ H_2 \\ H_3 \\ H_4 \\ H_5 \end{pmatrix}, \qquad \mathcal{O}^T \mathcal{M}^2 \mathcal{O} = \operatorname{diag}(m_{H_1}^2, \cdots, m_{H_5}^2)$$

$$\mathcal{L}_{\text{gauge}} \ni g_2 m_W g_{VVH_i} \left(W^+_{\mu} W^{-\mu} + \frac{1}{2\cos^2 \theta_W} Z_{\mu} Z^{\mu} \right) H_i + \frac{g_2}{2\cos \theta_W} g_{ZH_iH_j} Z^{\mu} (H_i \overleftrightarrow{\partial}_{\mu} H_j)$$
$$\mathcal{L}_{\text{Yukawa}} \ni -\frac{g_2 m_b}{2m_W} \bar{b} (g^S_{bbH_i} + i\gamma^5 g^P_{bbH_i}) b H_i$$

$$\begin{cases} g_{VVH_i} = \mathcal{O}_{1i}\cos\beta + \mathcal{O}_{2i}\sin\beta \\ g_{ZH_iH_j} = \frac{1}{2} \left\{ (\mathcal{O}_{4i}\mathcal{O}_{2j} - \mathcal{O}_{4j}\mathcal{O}_{2i})\cos\beta - (\mathcal{O}_{4i}\mathcal{O}_{1j} - \mathcal{O}_{4j}\mathcal{O}_{1i})\sin\beta \right\} \\ g_{bbH_i}^S = \mathcal{O}_{1i}\frac{1}{\cos\beta}, \qquad g_{bbH_i}^P = -\mathcal{O}_{4i}\tan\beta \\ g_{bbH_i}^2 \equiv \left(g_{bbH_i}^S\right)^2 + \left(g_{bbH_i}^P\right)^2 \end{cases}$$

★ MSSM vs NMSSM

tree-level mass relation (CP-conserving)

$m_h \le \min\{m_A, m_Z\}$	$m_{A_1} < \hat{m} < m_{A_2}$
$m_H \ge \max\{m_A, m_Z\}$	For $\hat{m} \gg v_0, v_n, m_{S_1} < m_{S_2} < \hat{m} < m_{S_3}$
$m_{H^\pm}^2 = m_A^2 + m_W^2$	$\hat{m}^2 = m_{H^{\pm}}^2 - m_W^2 + \lambda ^2 v_0^2/2$

tree-level vacuum

The tadpole condition $\left\langle \frac{\partial V_0}{\partial \varphi_i} \right\rangle = 0$ is sufficient for the EW vacumm (v_{0d}, v_{0u}) to be the global minimum of the potential.	Even if the tadpole conditions are satisfied, the prescribe vacuum (v_{0d}, v_{0u}, v_{0n}) is <i>not</i> always the global minimum. \leftarrow cubic terms in V_0
---	---

Although the NMSSM has more parameters than the MSSM, it must satisfy more constraints than the MSSM.

 $\lambda, \kappa, A_{\lambda}, A_{\kappa}, m_N^2$

***** Constraints on the parameters

1. vacuum condition

The vacuum $(v_0, v_{0n}, \tan \beta_0, \theta_0, \varphi_0)$ be the global minimum of V_{eff} .

2. spectrum condition

The neutral Higgs boson with $|g_{VVH}| > 0.1$ be heavier than 114GeV.

 $\begin{array}{l} \text{We scanned the parameter space for (CP-conserving case)} \\ \tan \beta_0 = 2 - 10, \ v_{0n} = 100 - 1000 \text{GeV}, \ m_{H^\pm} = 100 - 5000 \text{GeV}, \\ -1000 \text{GeV} \leq A_\kappa \leq 0, \ 0 \leq \lambda \leq 1, \ -1 \leq \kappa \leq 1 \\ (1000 \text{GeV}, 800 \text{GeV}) \quad \text{heavy-squark} \\ (1000 \text{GeV}, 800 \text{GeV}) \quad \text{heavy-squark} \\ (1000 \text{GeV}, 10 \text{GeV}) \quad \text{light-squark-1} \\ (500 \text{GeV}, 10 \text{GeV}) \quad \text{light-squark-2} \\ A_t = A_b = 20 \text{GeV} \end{array}$

A necessary condition for the vacuum condition: $V_{\text{eff}}(\boldsymbol{v}_0) < V_{\text{eff}}(\boldsymbol{0})$

$$m_{H^{\pm}}^{2} < \frac{2 \left|\lambda\right|^{2} v_{0n}^{2}}{\sin^{2} 2\beta_{0}} + \frac{2 \left|\kappa\right|^{2} v_{0n}^{4}}{v_{0}^{2} \sin^{2} 2\beta_{0}} + \frac{\mathcal{R} v_{0n}^{2}}{\sin 2\beta} - \frac{4 \mathcal{R}_{\kappa} v_{0n}^{3}}{3 v_{0}^{2} \sin^{2} 2\beta_{0}} + m_{Z}^{2} \cot^{2} 2\beta_{0} + m_{W}^{2}$$

for fixed (λ,κ) , upper bound on $m_{H^{\pm}}$

this bound becomes irrelevant in the MSSM-limit $v_{0n} \to \infty$ with λv_{0n} and κv_{0n} fixed for fixed $m_{H^{\pm}}$, an elliptic region in (λ, κ) -plane is excluded

the region shrinks to a point for $v_{0n} \rightarrow \infty$

We excuted *numerical search* for the global minimum of $V_{\rm eff}$ to ensure the vacuum condition.

e.g., $\tan \beta_0 = 3$, $v_{0n} = 200 \text{GeV}$, $m_{H^{\pm}} = 400 \text{GeV}$, $A_{\kappa} = -200 \text{GeV}$, heavy squark

λ	κ	m_{H_1}	m_{H_2}	m_{H_3}	m_{H_4}	m_{H_5}	$g^2_{VVH_1}$	$g^2_{VVH_2}$	$g^2_{VVH_3}$	$g_{VVH_4}^2$	$g^2_{VVH_5}$
0.9	-0.05	75.0	83.5	145.7	436.0	448.2	0.0094	0	0.9897	0.0009	0
0.95	-0.95	139.6	180.9	360.3	425.4	456.4	0.828	0.170	0	0	0.0028

along the line of $\lambda=0.9$

1

\star Phase transitions in the NMSSM

There has been a belief that the EWPT in the NMSSM is strongly first-order because of the cubic terms in the Higgs potential.

naive (?) argument [Pietroni, NPB402('93)27] order parameters : $\begin{cases} v_d = v \cos \beta(T) = y \cos \alpha(T) \cos \beta(T), \\ v_u = v \sin \beta(T) = y \cos \alpha(T) \sin \beta(T), \\ v_n = y \sin \alpha(T) \end{cases}$ $V_0 = \frac{1}{2} \left((m_1^2 \cos^2 \beta + m_2^2 \sin^2 \beta) \cos^2 \alpha + m_N^2 \sin^2 \alpha) y^2 - \left(R_\lambda \cos^2 \alpha \sin \alpha \cos \beta \sin \beta + \frac{1}{3} R_\kappa \sin^3 \alpha \right) y^3 + \cdots \right)$

strongly 1st order PT by the tree-level cubic term ?

Is such a parametrization valid ?

no symmetry between the doublets and the singlet 1.1

Indeed, we have found various phases and transitions among them.

possible phases and transitions

phase	order parameters	symmetries
EW	$v eq 0$, $v_n eq 0$	fully broken
I, I′	$v=0$, $v_n eq 0$	local $SU(2)_L \times U(1)_Y$
Ш	$v eq 0$, $v_n=0$	global $U(1)$
SYM	$v = v_n = 0$	$SU(2)_L imes U(1)_Y$, global $U(1)$

global U(1): $v_u e^{i\theta} = v_2 + iv_3 \mapsto e^{i\alpha}(v_2 + iv_3)$ in the subspace of $v_n = 0$ phase-I : heavy Higgs phase-I': light Higgs

4 types of phase transitions

A: SYM \rightarrow I \Rightarrow EW B: SYM \rightarrow I' \Rightarrow EW

 $\mathsf{C}:\mathsf{SYM}\Rightarrow\mathsf{II}\to\mathsf{EW}\qquad \mathsf{D}:\mathsf{SYM}\Rightarrow\mathsf{EW}$

"⇒": EWPT

expamles of the phase transitions in the CP-conserving case

common parameters: $\tan\beta_0=5$, $v_{0n}=200{\rm GeV}$, $A_\kappa=-100{\rm GeV}$

А	$m_{H^{\pm}} = 600 { m GeV}$	$(\lambda, \kappa) = (0.9, -0.9)$	light-squark-1
В	$m_{H^{\pm}} = 600 { m GeV}$	$(\lambda,\kappa) = (0.85, -0.1)$	heavy-squark
С	$m_{H^{\pm}} = 600 { m GeV}$	$(\lambda,\kappa) = (0.82, -0.05)$	light-squark-1
D	$m_{H^{\pm}} = 700 { m GeV}$	$(\lambda,\kappa) = (0.96, -0.02)$	light-squark-2

Higgs spectrum and VVH-couplings

		H_1	H_2	H_3	H_4	H_5
A	$m_{H_i}(\text{GeV})$	119.53	203.59	265.74	617.24	637.47
	$g_{VVH_i}^2$	0.9992	5.926×10^{-4}	0	0	1.884×10^{-4}
D	$m_{H_i}(\text{GeV})$	38.89	75.31	131.11	625.61	627.95
D	$g_{VVH_i}^2$	6.213×10^{-8}	0	0.9999	6.816×10^{-5}	0
	$m_{H_i}(\text{GeV})$	42.24	63.49	117.25	625.09	627.44
C	$g_{VVH_i}^2$	0.00188	0	0.9980	9.541×10^{-5}	0
D	$m_{H_i}(\text{GeV})$	41.88	58.62.08	115.15	730.51	734.58
	$g_{VVH_i}^2$	0	1.015×10^{-4}	0.9997	1.632×10^{-4}	0

A: heavy Higgs (MSSM-like), B, C, D: light Higgs

reduced effective potential:

 $\tilde{V}_{\text{eff}}(v, v_n; T) = V_{\text{eff}}(v \cos \beta(T), v \sin \beta(T), 0, v_n, 0; T) - V_{\text{eff}}(0, 0, 0, 0; T)$

\star How the phase transitions proceed

type-A MSSM-like EWPT — proceeds along almost constant $v_n \neq 0$ a light stop is needed for it to be strongly first order

type-B new type of 2-stage PT

leap from $(v(T_{C-}), v_n(T_{C-}))$ to $(0, v_n(T_{C+}))$ strongly first order EWPT (no light stop is needed)

type-C new type of 2-stage PT

EWPT proceeds along $v_n = 0$

a light stop is needed for it to be strongly first order

1-stage PT (so far mainly considered in the NMSSM)

a light stop is needed for the EWPT to be strongly first order

type-B,C,D — light-Higgs scenario — peculiar to NMSSM

4. Summary

EW Baryogenesis

 \star based on a testable model

★ free from the proton decay problem

needs extensions of the MSM for

CP violation *

> new sources of CP violation EDM, precise measurements of CP-viol. BR μ , A_q , gaugino masses, θ , \cdots in SUSY models

strongly 1st-order EWPT \star

extra scalars: 2HDM, MSSM, NMSSM, ···

 \implies Higgs spectrum and couplings LHC, ILC, ...

• $m_H > 120 \text{GeV} \implies 1 \text{st-order EWPT}$ in the MSSM X

• $m_H > 135 \text{GeV} \implies \text{MSSM X}$ NMSSM (light Higgs for 1st-order EWPT) 2HDM, etc.

We studied the phase transitions in the NMSSM to find

- there are 4 phases EW, SYM, I, I', II
- 4 types of PT, 3 of which have 2-stage nature heavy Higgs ⇒ MSSM-like EWPT light Higgs ⇒ strongly 1st order EWTP

In particular,

NMSSM in the light Higgs scenario with heavy charged Higgs $(m_{H^{\pm}} > 300 \text{GeV})$ $m_{H_1} < m_{H_2} < 114 \text{GeV} < m_{H_3} < m_{H^{\pm}} < m_{H_4} < m_{H_5}$ $g_{VVH_1}^2, \ g_{VVH_2}^2 \ll 1$

 \simeq Minimal SM with 1st order EWPT (type-B), extra CP violation

How can we distinguish it from the MSM?

— may be by precision measurements of the couplings

If $\begin{cases} SUSY particle \\ Higgs boson (m_H > 135 GeV) \end{cases}$ are found, the NMSSM will be promising.