Electroweak Baryogenesis

K. Funakubo, Saga Univ.

content

- I. Introduction
- II. Sphaleron Process
- III. Electroweak Phase Transition (EWPT)
- IV. Mechanism of Electroweak Baryogenesis

V. Discussions

K.F., Prog.Theor.Phys.96 ('96) 475.V.A. Rubakov and M.E. Shaposhnikov, hep-ph/9603208.A.Cohen, et al., Ann.Rev.Nucl.Part.Sci. 33 ('93) 27.

I. Introduction

Baryon Asymmetry of the Universe (BAU)

$$\iff \frac{n_B}{s} \equiv \frac{n_b - n_{\bar{b}}}{s} = (0.21 - 0.90) \times 10^{-10}$$
$$\iff \text{big-bang nucleosynthesis}$$

constant after decoupling of B-violing processes

evidence of **BAU**

- 1. no anti-matter in cosmic rays from our galaxy some anti-matter consistent as secondary products
- 2. no hard γ (> 1GeV) from nearby clusters of galaxies a cluster: $(1 \sim 100)M_{\rm galaxy} \simeq 10^{12 \sim 14} M_{\odot}$

Starting from a *B*-symmetric universe ...

$$\frac{n_b}{s} \simeq \frac{n_{\bar{b}}}{s} \sim 8 \times 10^{-11} \text{ at } T = 38 \text{MeV}$$

$$\sim 7 \times 10^{-20} \text{ at } T = 20 \text{MeV}$$

$$N\bar{N}\text{-annihilation decouple}$$

At T = 38 MeV, mass within a causal region $= 10^{-7} M_{\odot} \ll 10^{12} M_{\odot}$.

We must have the BAU $n_B/s = (0.21 - 0.90) \times 10^{-10}$ before the universe was cooled down to $T \simeq 38$ MeV. 3 conditions for generation of BAU [Sakharov, '67]

- (1) baryon number violation
- (2) C and CP violation
- (3) departure from equilibrium

if *B*-violion is in equil. $\implies n_b = n_{\bar{b}}$

(2) If C or CP is conserved, no B is generated: This is because B is odd under C and CP.

indeed . . .

 ρ_0 : baryon-symmetric initial state of the universe *s.t.*

 $\langle n_B \rangle_0 = \operatorname{Tr}[\rho_0 n_B] = 0$ time evolution of $\rho \Leftrightarrow$ Liouville eq.: $i\hbar \frac{\partial \rho}{\partial t} + [\rho, H] = 0$ If *H* is *C*- or *CP*-invariant, $[\rho, C] = 0$ or $[\rho, C\mathcal{P}] = 0$ (spontaneous *CP* viol. $\Leftrightarrow [\rho, C\mathcal{P}] \neq 0$) Since $CBC^{-1} = -B$ and $C\mathcal{P}BC\mathcal{P}^{-1} = -B$

$$\langle n_B \rangle = \operatorname{Tr}[\rho n_B] = \operatorname{Tr}[\rho C n_B C^{-1}] = -\operatorname{Tr}[\rho n_B]$$

$$or$$

$$\langle n_B \rangle = \operatorname{Tr}[\rho C \mathcal{P} n_B (C \mathcal{P})^{-1}] = -\operatorname{Tr}[\rho n_B]$$

Both C and CP must be violated to have $\langle n_B \rangle \neq 0$.

example — GUTs

[Kolb and Turner, The Early Universe]

out-of-equil. decay of X bosons $m_X \gtrsim 10^{15} \text{GeV}$ X = gauge boson or Higgs boson

Consider 2 channels:

 $\begin{cases} X \longrightarrow qq & \Delta B = 2/3 & \text{with branching } r \\ X \longrightarrow \bar{q}\bar{l} & \Delta B = -1/3 & \text{with branching } 1-r \end{cases}$ in the decay of $X \cdot \bar{X}$ pairs $\langle \Delta B \rangle = \frac{2}{3}r - \frac{1}{3}(1-r) - \frac{2}{3}\bar{r} + \frac{1}{3}(1-\bar{r}) = r - \bar{r}$ $\therefore C \text{ or } CP \text{ is conserved } (r = \bar{r}) \Longrightarrow \Delta B = 0$ At $T \simeq m_X$, decay rate of $X = \Gamma_D \simeq \alpha m_X$ $\alpha \sim 1/40$ for gauge boson, $\alpha \sim 10^{-6 \sim -3}$ for Higgs boson

Hubble parameter : $H\sim 1.7\sqrt{g_*}T^2/m_{Pl}$ $g_*\simeq 10^{2\sim3}$: massless degrees of freedom

 $\therefore \ \Gamma_D \simeq H \text{ at } T \simeq m_X \\ \implies \text{decay and production of } X\bar{X} \text{ are out of equil.}$

As we shall see, B + L were washed out before EWPT.

 $\therefore B - L$ -conserving GUT (e.g. minimal SU(5) model) will be useless to generate the BAU.

other candidates for generating BAU

- ■Majorana neutrino ⇒ L-violating interaction decoupling of L-violating interaction ⇒ constraints on the neutrino mass ↔ solar ν-experiments
- Affleck-Dine mechanism in a supersymmetric model [A-D, N.P. B174('86) 45]

 $\langle \text{squark} \rangle \neq 0 \text{ or } \langle \text{slepton} \rangle \neq 0 \text{ along (nearly) flat directions,}$ at high temperature $\implies B$ - and/or L-violation

- Electroweak Baryogenesis
- (1) anomaly in B + L-current
- (2) C-violation (chiral gauge)
 CP-violation in KM matrix or extended Higgs sector
- (3) first-order EWPT with expanding bubble walls
- topological defects EW string, domain wall \sim EW baryogenesis effective volume is too small, mass density of the universe

N.B.

The BAU may be generated by some combination of these mechanisms. Any way,

EWPT will be the last chance to obtain the BAU.

II. Sphaleron Process

II-1. Anomalous fermion number nonconservation axial anomaly in the standard model

$$\partial_{\mu} j^{\mu}_{B+L} = \frac{N_f}{16\pi^2} [g^2 \text{Tr}(F_{\mu\nu} \tilde{F}^{\mu\nu}) - g'^2 B_{\mu\nu} \tilde{B}^{\mu\nu}],$$

$$\partial_{\mu} j^{\mu}_{B-L} = 0,$$

 $N_f =$ number of the generations, $\tilde{F}^{\mu\nu} \equiv \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$

integrating these equations,

$$\begin{split} B(t_f) - B(t_i) &= \frac{N_f}{32\pi^2} \int_{t_i}^{t_f} d^4x \left[g^2 \text{Tr}(F_{\mu\nu} \tilde{F}^{\mu\nu}) - {g'}^2 B_{\mu\nu} \tilde{B}^{\mu\nu} \right] \\ &= N_f \left[N_{CS}(t_f) - N_{CS}(t_i) \right] \end{split}$$

where N_{CS} is the Chern-Simons number defined, in the $A_0 = 0$ gauge, by

$$\begin{split} N_{CS} &= \frac{1}{32\pi^2} \int d^3x \, \epsilon_{ijk} \left[g^2 \text{Tr} \left(F_{ij} A_k - \frac{2}{3} g A_i A_j A_k \right) - g'^2 B_{ij} B_k \right]_t \\ &: \text{ gauge-noninvariant} \end{split}$$

For classical vacua of the gauge sector, $N_{CS} \in \mathbb{Z}$ $\iff F_{ij} = B_{ij} = 0$ $\iff A = iU^{-1}dU$ and B = dv with $U \in SU(2)$

 $U: S^3 \longrightarrow SU(2) \simeq S^3$ is characterized by its winding number, $\pi_3(SU(2)) \simeq \mathbb{Z}$. $\leftrightarrow N_{CS}$

background of gauge fields with $\Delta N_{CS} = 1$

 $\Rightarrow \Delta B = 1$ for each generation

(\therefore level-crossing phenomenon) $\leftrightarrow \rightarrow$ index theorem

transition rate between configurations with $\Delta N_{CS} = 1$ \uparrow WKB approximation:

sphaleron for $\theta_W \neq 0$ [Brihaye and Kunz, P.R.D50('94)]2-doublet Higgs model[Peccei, Zhang and Kastening, P.L.B266('91)]squark vs sphaleron[Moreno, Oaknin and Quirós, hep-ph/9612212]

Transition Rate [Arnold and McLerran, P.R.D36('87)] $\omega_{-}/(2\pi) \leq T \leq T_{C}$

$$\Gamma_{\rm sph}^{(b)} \simeq k \mathcal{N}_{\rm tr} \mathcal{N}_{\rm rot} \frac{\omega_{-}}{2\pi} \left(\frac{\alpha_W(T)T}{4\pi}\right)^3 {\rm e}^{-E_{\rm sph}/T}$$

zero modes
$$\rightarrow \begin{cases} \mathcal{N}_{tr} = 26 \\ \mathcal{N}_{rot} = 5.3 \times 10^3 \end{cases}$$
 for $\lambda = g^2$
$$\omega_{-}^2 \simeq (1.8 \sim 6.6) m_W^2 \text{ for } 10^{-2} \le \lambda/g^2 \le 10$$
$$k \simeq O(1)$$

 $T \gtrsim T_C$ symmetric phase — no mass scale dimensional analysis :

$$\Gamma_{\rm sph}^{(s)} \simeq \kappa (\alpha_W T)^4$$

check by Monte Carlo simulation $\langle N^2_{CS}(t) \rangle = 2\Gamma V t$ as $t \to \infty$

$$\begin{split} \kappa > 0.4 & SU(2) \text{ gauge-Higgs system} \\ & \text{[Ambjørn, et al. N.P.B353('91)]} \\ \kappa = 1.09 \pm 0.04 & SU(2) \text{ pure gauge system} \\ & \text{[Ambjørn and Krasnitz, P.L.B362('95)]} \end{split}$$

We use 'sphaleron transition' even in the symmetric phase.

II-2. Washout of B + L

B + L would be washed out after the EWPT, if the EWPT is second order or the sphaleron process does not decouple after it.

decoupling of sphaleron process $\Leftrightarrow \Gamma_{\rm sph} < {\sf Hubble \ parameter}$

at
$$T = T_C \simeq 100 \text{GeV}$$
,
 $H(T_C) = \frac{\dot{R}(t)}{R(t)} \simeq 1.7 \sqrt{g_*} \frac{T_C^2}{m_{Pl}} \simeq 10^{-13} \text{GeV}$
 $g_* \sim 100$: effective massless degrees of freedom
At $T > T_C$,
 $\Gamma_{\text{sph}} \simeq \Gamma_{\text{sph}}^{(s)} / T^3 \simeq \kappa \alpha_W^4 T \sim 10^{-4} \text{GeV} \gg H(T_C)$
 $\implies B + L$ -changing process in equilibrium

relic baryon number after the washout particle number density $[m/T\ll 1 \mbox{ and } \mu/T\ll 1]$

$$n_{+} - n_{-} = \int \frac{d^{3} \mathbf{k}}{(2\pi)^{2}} \left[\frac{1}{\mathrm{e}^{\beta(\omega_{k} - \mu)} \mp 1} - \frac{1}{\mathrm{e}^{\beta(\omega_{k} + \mu)} \mp 1} \right]$$
$$\simeq \begin{cases} \frac{T^{3}}{3} \frac{\mu}{T} & \text{for bosons} \\ \frac{T^{3}}{6} \frac{\mu}{T} & \text{for fermions,} \end{cases}$$

$$\omega_k = \sqrt{k^2 + m^2}$$

chemical equilibrium — all the gauge int., Yukawa, sphaleron

W^-	$u_{L(R)}$	$d_{L(R)}$	$e_{iL(R)}$	$ u_{iL}$	ϕ^0	ϕ^-
μ_W	$\mu_{u_{L(R)}}$	$\mu_{d_{L(R)}}$	$\mu_{iL(R)}$	μ_i	μ_0	μ_{-}

gauge int. $\Leftrightarrow \mu_W = \mu_{d_L} - \mu_{u_L} = \mu_{iL} - \mu_i = \mu_- + \mu_0$ $|0\rangle \leftrightarrow u_L d_L d_L \nu_L \quad \Leftrightarrow \quad N_f(\mu_{u_L} + 2\mu_{d_L}) + \sum_i \mu_i = 0$

Quantum number densities [in unit of $T^2/6$]

$$B = N_{f}(\mu_{u_{L}} + \mu_{u_{R}} + \mu_{d_{L}} + \mu_{d_{R}}) = 4N_{f}\mu_{u_{L}} + 2N_{f}\mu_{W},$$

$$L = \sum_{i} (\mu_{i} + \mu_{iL} + \mu_{iR}) = 3\mu + 2N_{f}\mu_{W} - N_{f}\mu_{0}$$

$$Q = \frac{2}{3}N_{f}(\mu_{u_{L}} + \mu_{u_{R}}) \cdot 3 - \frac{1}{3}N_{f}(\mu_{d_{L}} + \mu_{d_{R}}) \cdot 3$$

$$-\sum_{i} (\mu_{iL} + \mu_{iR}) - 2 \cdot 2\mu_{W} - 2m\mu_{-}$$

$$= 2N_{f}\mu_{u_{L}} - 2\mu - (4N_{f} + 4 + 2m)\mu_{W} + (4N_{f} + 2m)\mu_{0}$$

$$I_{3} = \frac{1}{2}N_{f}(\mu_{u_{L}} - \mu_{d_{L}}) \cdot 3 + \frac{1}{2}\sum_{i} (\mu_{i} - \mu_{iL})$$

$$-2 \cdot 2\mu_{W} - 2 \cdot \frac{1}{2}m(\mu_{0} - \mu_{-})$$

$$= -(2N_{f} + m + 4)\mu_{W}$$

$$\begin{split} \mu &\equiv \sum_i \mu_i \\ m : \text{ number of Higgs doublets} \end{split}$$

• symmetric phase $\implies Q = I_3 = 0$

$$B = \frac{8N_f + 4m}{22N_f + 13m} (B - L), \qquad L = -\frac{14N_f + 9m}{22N_f + 13m} (B - L)$$

• broken phase $\implies Q = 0$ and $\mu_0 = 0$

$$B = \frac{8N_f + 4m + 8}{24N_f + 13m + 26}(B - L)$$
$$L = -\frac{16N_f + 9m + 18}{24N_f + 13m + 26}(B - L)$$

 \therefore If $(B - L)_{\text{primordial}} = 0$, B = L = 0 at present !

To have nonzero BAU,

- (i) we must have B L before the sphaleron process decouples, or
- (ii) B + L must be created at the first-order EWPT, and the sphaleron process must decouple immediately after that.

(i)
$$\leftarrow$$
 GUTs, Majorana ν , Affleck-Dine

(ii) = Electroweak Baryogenesis

III. Electroweak Phase Transition (EWPT) III-1. Static properties of the phase transition

rate of any interacton at $T \sim T_C \ll$ Hubble parameter \implies equil. thermodynamics applicable to static properties

order of the transition, transition temperature, latent heat and surface tension (if it is first order) \uparrow free energy density = effective potential at $T \neq 0$

function of the order parameters and \boldsymbol{T}

Example Minimal standard model (MSM) order parameter: $\langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \varphi \end{pmatrix}$

a first order phase transition

one-loop level,

$$V_{\text{eff}}(\varphi;T) = V_{\text{tree}}(\varphi) + V^{(1)}(\varphi;T),$$

where

$$V_{\text{tree}}(\varphi) = -\frac{1}{2}\mu_0^2\varphi^2 + \frac{\lambda_0}{4}\varphi^4$$
$$V^{(1)}(\varphi;T) = -\frac{i}{2}\sum_A c_A \int_k \log \det \left[i\mathcal{D}_A^{-1}(k;\varphi)\right]$$

with

 $\mu_0^2, \ \lambda_0$: bare parameters \leftarrow renormlized at T=0 A runs over all the partice species

 $|c_A|$ counts the degrees of freedom, $\begin{cases} c_A > 0 & \text{for bosons} \\ c_A < 0 & \text{for fermions} \end{cases}$

$$\begin{split} \int_{k} &\equiv iT \sum_{n=-\infty}^{\infty} \int \frac{d^{3}k}{(2\pi)^{3}} \\ \text{with } k^{0} &= \omega_{n} = \begin{cases} 2n\pi T & \text{for bosons,} \\ (2n+1)\pi T & \text{for fermions.} \end{cases} \end{split}$$

W-boson :

$$c_W = 2$$

 $i \mathcal{D}^{-1}{}^{\mu
u}_W(k;\varphi) = (-k^2 + m_W^2(\varphi))\eta^{\mu
u} + (1 - \frac{1}{\xi})k^{\mu}k^{
u}$
with $m_W(\varphi) = \frac{1}{2}g\varphi$

Dirac fermion :

$$c_f = -2$$

 $i\mathcal{D}_f^{-1}(k;\varphi) = k - m_f(\varphi)$

with $m_f(arphi) = y_f arphi/\sqrt{2}$

Higgs boson: $m_H^2(\varphi) = 3\lambda \varphi^2 - \mu^2$ — negative for small φ \implies complex $V_{\rm eff}$

----- sum over *daisy diagrams*, or *improved perturbation*

neglecting the Higgs contribution

$$V_{\text{eff}}(\varphi;T) = V_0(\varphi) + \overline{V}(\varphi;T)$$

where

$$\begin{aligned} V_0(\varphi) &= -\frac{1}{2}\mu^2 \varphi^2 + \frac{\lambda}{4}\varphi^4 + 2Bv_0^2 \varphi^2 + B\varphi^4 \left[\log\left(\frac{\varphi^2}{v_0^2}\right) - \frac{3}{2} \right] \\ \bar{V}(\varphi;T) &= \frac{T^4}{2\pi^2} \left[6I_B(a_W) + 3I_B(a_Z) - 6I_F(a_t) \right] \\ B &= \frac{3}{64\pi^2 v_0^4} (2m_W^4 + m_Z^4 - 4m_t^4) \\ I_{B,F}(a^2) &\equiv \int_0^\infty dx \, x^2 \log\left(1 \mp e^{-\sqrt{x^2 + a^2}}\right) \end{aligned}$$

with

 $v_0 = 246 {\rm GeV}$ is the minimum of $V_0(arphi)$ $a_A = m_A(arphi)/T$

high-temperature expansion $[m/T\ll 1]$

$$I_B(a^2) = -\frac{\pi^4}{45} + \frac{\pi^2}{12}a^2 - \frac{\pi}{6}(a^2)^{3/2} - \frac{a^4}{16}\log\frac{\sqrt{a^2}}{4\pi} - \frac{a^4}{16}\left(\gamma_E - \frac{3}{4}\right)\frac{a^4}{2} + O(a^6)$$
$$I_F(a^2) = \frac{7\pi^4}{360} - \frac{\pi^2}{24}a^2 - \frac{a^4}{16}\log\frac{\sqrt{a^2}}{\pi} - \frac{a^4}{16}\left(\gamma_E - \frac{3}{4}\right) + O(a^6)$$

For $T > m_W, m_Z, m_t$,

$$V_{\text{eff}}(\varphi;T) \simeq D(T^2 - T_0^2)\varphi^2 - ET\varphi^3 + \frac{\lambda_T}{4}\varphi^4$$

where

$$D = \frac{1}{8v_0^2} (2m_W^2 + m_Z^2 + 2m_t^2)$$

$$E = \frac{1}{4\pi v_0^3} (2m_W^3 + m_Z^3) \sim 10^{-2}$$

$$T_0^2 = \frac{1}{2D} (\mu^2 - 4Bv_0^2)$$

$$\lambda_T = \lambda$$

$$- \frac{3}{16\pi^2 v_0^4} \left(2m_W^4 \log \frac{m_W^2}{\alpha_B T^2} + m_Z^4 \log \frac{m_Z^2}{\alpha_B T^2} - 4m_t^4 \log \frac{m_t^2}{\alpha_F T^2} \right)$$
with $\log \alpha_B = 2 \log 4\pi - 2\gamma_E$ and $\log \alpha_F = 2 \log \pi - 2\gamma_E$

At T_C , $\varphi_C = \frac{2ET_C}{\lambda_{T_C}}$ $\Gamma_{\rm sph}^{(b)}/T_C^3 < H(T_C) \iff \frac{\varphi_C}{T_C} \gtrsim 1$ \implies upper bound on λ $[m_H = \sqrt{2\lambda}v_0]$ $m_H \lesssim 46 \text{GeV}$

 \longleftrightarrow inconsistent with the lower bound $m_H > 65 {
m GeV}$

2-doublet extension of the MSM or MSSM : more scalars \longrightarrow more φ^3 -temrs \implies stronger first-order EWPT

MSSM with light stop

[Carena, et al., P.L.**B380** ('96) 81] [Delepine, et al., P.L.**B386** ('96) 183]

the stop mass-squared matrix :

$$M_{\tilde{t}}^2 = \begin{pmatrix} m_{11}^2 & m_{12}^2 \\ m_{12}^{2*} & m_{22}^2 \end{pmatrix}$$

where

$$m_{11}^2 = m_{\tilde{q}}^2 + rac{1}{8} \left(\frac{g_1^2}{3} - g_2^2
ight) \left(
ho_1^2 -
ho_2^2
ight) + rac{1}{2} y_t^2
ho_2^2,$$

$$m_{22}^2 = m_{\tilde{t}}^2 - \frac{1}{6}g_1^2(\rho_1^2 - \rho_2^2) + \frac{1}{2}y_t^2\rho_2^2,$$

$$m_{12}^2 = \frac{y_t}{\sqrt{2}} \left[\left(\mu \rho_2 + m_{3/2} A \rho_1 \cos \theta \right) - i m_{3/2} A \rho_1 \sin \theta \right]$$

if we put

$$\langle \Phi_d \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_2 \\ 0 \end{pmatrix}, \qquad \langle \Phi_u \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \rho_1 e^{i\theta} \end{pmatrix},$$
$$\frac{m_{\tilde{q}}}{m_{\tilde{t}}} = 0 \\ m_{\tilde{t}} = 0 \end{pmatrix} \implies \text{smaller eigenvalue of } M_{\tilde{t}}^2 \equiv m_-^2 \sim O(\rho^2)$$

 \therefore high-T expansion

$$\bar{V}_{\tilde{t}}(\rho_i, \theta; T) \Rightarrow -\frac{T}{6\pi} (m_-^2)^{3/2}$$

e.g. for $m_{\tilde{q}} = 1$ TeV, $m_{\tilde{t}} = 0$ and $\tan \beta = 1.5$, $\implies \varphi_C/T_C \gtrsim 1$ for $m_- \lesssim 185$ GeV. \triangle Monte Carlo Simulations [MSM][Jansen, N.P.B.Suppl.47('96)] effective fermion mass : $m_f(T) \sim O(T) \leftarrow$ nonzero modes

- 4-dim. SU(2) system with a Higgs doublet
- 3-dim. SU(2) system with a Higgs doublet and a triplet

time-component of the gauge field

only zero-freq. modes of the bosons survive as $T \rightarrow$ large matching finite-T Green's functions with 4-dim. theory

 \Rightarrow T-dependent parameters

shematic finite-T phase diagram [λ -fixed]

- EWPT is first order for $m_H \lesssim 70 \text{GeV}$ The strength of the transition rapidly decreases as m_H increases.
- $\varphi_C/T_C > 1$ is not satisfied for $m_H \ge 50 \text{GeV}$
- The numerical results coincide with those of the continuum two-loop perturbation theory, for $m_H \leq 70 \text{GeV}$.

III-2. Dynamics of the phase transition

first-order EWPT accompanying bubble nucleation/growth

Suppose that $V_{\text{eff}}(\varphi; T_C)$ is known.

nucleation rate per unit time and unit volume:

$$I(T) = I_0 e^{-\Delta F(T)/T}$$

where

$$\Delta F(T) = \frac{4\pi}{3} r^3 [p_s(T) - p_b(T)] + 4\pi r^2 \sigma$$

with

$$\begin{split} p_s(T) &= -V_{\rm eff}(0;T), \qquad p_b(T) = -V_{\rm eff}(\varphi(T);T) \\ \text{supercooling} &\longrightarrow p_s(T) < p_b(T) \\ \sigma &\simeq \int dz (d\varphi/dz)^2 : \text{ surface energy density} \\ \text{radius of the critical bubble} : \ r_*(T) = \frac{2\sigma}{p_b(T) - p_s(T)} \end{split}$$

$$s = rac{\partial V_{ ext{eff}}}{\partial T}$$
 : entropy density
 $ho = V_{ ext{eff}} - Ts$: energy density

How the EWPT proceeds ?

f(t) : fraction of space converted to the broken phase

$$f(t) = \int_{t_C}^{t} dt' I(T(t')) [1 - f(t')] V(t', t)$$

where

 $V(t^\prime,t)$: volume of a bubble at t which was nucleated at t^\prime

$$V(t',t) = \frac{4\pi}{3} \left[r_*(T(t')) + \int_{t'}^t dt'' v(T(t'')) \right]$$

3

 $T=T(t) \Leftarrow \rho = (\pi^2/30)g_*T^4 \propto R^{-4}$ for RD universe v(T) : wall velocity

one-loop V_{eff} of MSM with $m_H = 60 \text{GeV}$ and $m_t = 120 \text{GeV}$ [Carrington and Kapsta, P.R.D47('93)]

At 6.5×10^{-14} sec, bubbles began to nucleate. [A characteristic time scale of the EW processes is $O(10^{-26})$ sec.]

90% of the universe is converted by bubble growth

weakly first order \iff small φ_C and/or lower barrier height $\implies \begin{cases} \text{nucleation dominance over growth} \\ \text{large fluctuation between the two phases} \end{cases}$

IV. Mechanism of Electroweak Baryogenesis

At $T \simeq T_C$, hierarchy of time scales :

EW	$t_{EW} \simeq 1 {\rm GeV}^{-1}$
Yukawa	$t_Y \simeq (m_W/m_f)^4 { m GeV}^{-1}$
QCD	$t_s \simeq 0.1 {\rm GeV}^{-1}$
Hubble	$H^{-1}\simeq 10^{13}{\rm GeV}^{-1}$
sphaleron	$t_{\rm sph} = (\kappa \alpha_W^4 T)^{-1} \simeq \kappa^{-1} \cdot 10^4 {\rm GeV}^{-1}$
wall motion	$t_{\rm wall} \simeq 0.01 \sim 4 {\rm GeV}^{-1}$
$t_{ m wall}$	$= \frac{\text{wall width}}{\text{wall velocity}} \simeq \frac{0.01 \sim 0.04 \text{GeV}^{-1}}{0.1 \sim 0.8}$

 \triangleright for $m_f \lesssim 0.1 {
m GeV}$, $t_Y \sim H^{-1}$... Yukawa int. of light fermions are out of chemical equil. ▷ some of flavor-changing int. are out of chemical equil. V_{ub} , $|V_{cb}|$, $|V_{td}|$, $|V_{ts}| \ll 1$

 $\triangleright t_{\text{wall}} \ll t_{\text{sph}}$

sphaleron process is out of chemical equil. near the bubble wall even in the symmetric phase

Nonequilibrium state is realized near expanding bubble walls.

 $v_{co} \simeq 0.01 v_0 \Longleftarrow E_{\rm sph}/T_C \simeq 1$

bubble wall \leftarrow classical config. of gauge-Higgs system

Effects of *CP* violation :

- interactions between the particles and the bubble wall
- propagation of the particles in the plasma

generation of baryon number through sphaleron process $\downarrow\downarrow$ decoupling of sphaleron process in the broken phase

two scenarios to realize EW baryogenesis:

- spontaneous baryogenesis + diffusion classical, adiabatic
- charge transport scenario quantum mechanical, nonlocal

Both need CP violation in the Higgs sector. \iff extension of the MSM

two-Higgs-doublet model, MSSM, ...

IV-1. Charge transport mechanism

[Nelson, el al. N.P.B373('92)]

CP violation in the Higgs sector [spacetime-dependent] $\downarrow \downarrow$ difference in reflections of chiral fermions and antifermions $\downarrow \downarrow$ net chiral charge flux into the symmetric phase $\downarrow \downarrow$ sphaleron transition converts the charge into *B*

bubble wall velocity \simeq const. \Rightarrow constant chiral charge flux \Rightarrow bias on free energy along B [stationary nonequilibrium]

 $Q_{L(R)}^{i}$: charge of a left(right)-handed fermion of species i $R^{s}_{R \to L}$: reflection coeff. for the right-handed fermion incident

from the symmetric phase region

 $R^{s}_{R \rightarrow L}$: the same as above for the right-handed antifermion

 $\langle injected \ charge \ into \ symmetric \ phase \rangle$ brought by the fermions and antifermions in the symmetric phase :

$$= [(Q_{R}^{i} - Q_{L}^{i})R^{s}_{L \to R} + (-Q_{L}^{i} + Q_{R}^{i})\bar{R}^{s}_{R \to L} + (-Q_{L}^{i})(T^{s}_{L \to L} + T^{s}_{L \to R}) - (-Q_{R}^{i})(\bar{T}^{s}_{R \to L} + \bar{T}^{s}_{R \to R})]f^{s}_{Li} + [(Q_{L}^{i} - Q_{R}^{i})R^{s}_{R \to L} + (-Q_{R}^{i} + Q_{L}^{i})\bar{R}^{s}_{L \to R} + (-Q_{R}^{i})(T^{s}_{R \to L} + T^{s}_{R \to R}) - (-Q_{L}^{i})(\bar{T}^{s}_{L \to L} + \bar{T}^{s}_{L \to R})]f^{s}_{Ri}$$

the same brought by the transmission from the broken phase

$$\Delta Q_{i}^{b} = Q_{L}^{i} (T^{b}_{L \to L} f^{b}_{Li} + T^{b}_{R \to L} f^{b}_{Ri}) + Q_{R}^{i} (T^{b}_{L \to R} f^{b}_{Li} + T^{b}_{R \to R} f^{b}_{Ri}) + (-Q_{L}^{i}) (\bar{T}^{b}_{R \to L} f^{b}_{Li} + \bar{T}^{b}_{L \to L} f^{b}_{Ri}) + (-Q_{R}^{i}) (\bar{T}^{b}_{R \to R} f^{b}_{Li} + \bar{T}^{b}_{L \to R} f^{b}_{Ri})$$

by use of

 ΔQ_i^{s}

$$\begin{array}{ll} \text{unitarity:} & R^{s}{}_{L \rightarrow R} + T^{s}{}_{L \rightarrow L} + T^{s}{}_{L \rightarrow R} = 1, \quad \text{etc.} \\ \\ \text{reciprocity:} & T^{s}{}_{R \rightarrow L} + T^{s}{}_{R \rightarrow R} = T^{b}{}_{L \rightarrow L} + T^{b}{}_{R \rightarrow L}, \quad \text{etc.} \\ \\ & f^{s(b)}_{iL} = f^{s(b)}_{iR} \equiv f^{s(b)}_{i} \\ \end{array}$$

we obatin

$$\Delta Q^s{}_i + \Delta Q^b{}_i = (Q_L{}^i - Q_R{}^i)(f^s{}_i - f^b{}_i)\Delta R$$

where

$$\Delta R \equiv R^s{}_{R \to L} - \bar{R}^s{}_{R \to L}$$

total flux injected into the symmetric phase region

$$F^{i}_{Q} = \frac{Q_{L}^{i} - Q_{R}^{i}}{4\pi^{2}\gamma} \int_{m_{0}}^{\infty} dp_{L} \int_{0}^{\infty} dp_{T} p_{T}$$
$$\times \left[f_{i}^{s}(p_{L}, p_{T}) - f_{i}^{b}(-p_{L}, p_{T}) \right] \Delta R(\frac{m_{0}}{a}, \frac{p_{L}}{a})$$

where

$$f_{i}^{s}(p_{L}, p_{T}) = \frac{p_{L}}{E} \frac{1}{\exp[\gamma(E - v_{w}p_{L})/T] + 1}$$
$$f_{i}^{b}(-p_{L}, p_{T}) = \frac{p_{L}}{E} \frac{1}{\exp[\gamma(E + v_{w}\sqrt{p_{L}^{2} - m_{0}^{2}})/T] + 1}$$

are the fermion flux densities in the symmetric and broken phases.

 m_0 : fermion mass in the broken pase v_w : wall velocity $\gamma = p_T$: transverse momentum 1/a: wall width

$$\gamma = 1/\sqrt{1 - v_w^2}$$
$$E = \sqrt{p_L^2 + p_T^2}$$

 $\Delta R \Longrightarrow$ effects of CP violation

• MSM — KM matrix

dispersion relation of the fermion $\sim O(\alpha_W)$

[Farrar and Shaposhnikov, P.R.D50('94)] — decoherence by QCD effects (short range)

• CP violation in the Higgs sector *tree-level* quantum scattering by the bubble wall

choich of the charge :

$$\left. \begin{array}{c} Q_L - Q_R \neq 0 \\ \text{conserved in the symmetric phase} \end{array} \right\} \Longrightarrow \quad Y, \quad I_3$$

change of the state by the injection of the flux

assume :

- bubble is macroscopic and expand with const. velo.
- deep in the sym. phase, elementary processes are fast enough to realize a new stationary state
- \implies chemical potential argument

charged-current interection :

 $\mu_W = \mu_0 + \mu_- = -\mu_{t_L} + \mu_{b_L} = -\mu_{\nu_\tau} + \mu_{\tau_L}$

Yukawa interaction :

 $\mu_0 = -\mu_{t_L} + \mu_{t_R} = -\mu_{b_L} + \mu_{b_R} = -\mu_{\tau_L} + \mu_{\tau_R}$

no further independent relations

chem. potentials of conserved or almost conserved quantum numbers :

$$\mu_{B-L}, \quad \mu_Y, \quad \mu_{I_3}; \quad \mu_B$$

We assume the sphaleron process is out of equilibrium.

$$\begin{split} \mu_{t_L(b_L)} &= \frac{1}{3}\mu_B + \frac{1}{3}\mu_{B-L} + \frac{1}{6}\mu_Y + (-)\frac{1}{2}\mu_{I_3}, \\ \mu_{t_R} &= \frac{1}{3}\mu_B + \frac{1}{3}\mu_{B-L} + \frac{2}{3}\mu_Y \\ \mu_{b_R} &= \frac{1}{3}\mu_B + \frac{1}{3}\mu_{B-L} - \frac{1}{3}\mu_Y \\ \mu_{\tau_L(\nu_\tau)} &= -\mu_{B-L} - \frac{1}{2}\mu_Y + (-)\frac{1}{2}\mu_{I_3} \\ \mu_{0(-)} &= +(-)\frac{1}{2}\mu_Y - \frac{1}{2}\mu_{I_3} \\ \mu_W &= -\mu_{I_3} \end{split}$$

baryon and lepton number densities:

$$n_{B} = 3 \cdot \frac{1}{3} \cdot \frac{T^{2}}{6} (\mu_{t_{L}} + \mu_{t_{R}} + \mu_{b_{L}} + \mu_{b_{R}})$$

$$= \frac{T^{2}}{9} (2\mu_{B} + 2\mu_{B-L} + \mu_{Y})$$

$$n_{L} = \frac{T^{2}}{6} (\mu_{\nu_{\tau}} + \mu_{\tau_{L}} + \mu_{\tau_{R}}) = \frac{T^{2}}{6} (-3\mu_{B-L} - 2\mu_{Y})$$

If $n_B = n_L = 0$ before the injection of the hypercharge flux,

$$\mu_{B-L} = -\frac{2}{3}\mu_Y, \qquad \mu_B = \frac{1}{6}\mu_Y$$

hypercharge density:

$$\frac{Y}{2} = \frac{T^2}{6} \left\{ 3 \left[\frac{1}{6} (\mu_{t_L} + \mu_{b_L}) + \frac{2}{3} \mu_{t_R} - \frac{1}{3} \mu_{b_R} \right] \right] \\ - \frac{1}{2} (\mu_{\nu_{\tau}} + \mu_{\tau_L}) - \mu_{\tau_R} \right\} + \frac{T^2}{3} \frac{1}{2} (\mu_0 - \mu_-) m \\ = \frac{T^2}{6} (m + \frac{5}{3}) \mu_Y \qquad [m = \#(\text{Higgs doublets})] \\ \therefore \quad \mu_B = \frac{Y}{2(m + 5/3)T^2}$$

Integrating the equation for \dot{n}_B ,

$$n_B = -\frac{\Gamma_{\rm sph}}{T} \int dt \,\mu_B = -\frac{\Gamma_{\rm sph}}{2(m+5/3)T^3} \int dt \,Y$$

where

$$\int dt \, \mathbf{Y} = \int_{-\infty}^{z/v_w} dt \, \rho_Y(z - v_w t) = \frac{1}{v_w} \int_0^\infty dz \, \rho_Y(z).$$
[$z = \text{distance from the bubble wall }$]

The last integral is approximated as

$$\frac{1}{v_w} \int_0^\infty dz \, \rho_Y(z) \simeq \frac{F_Y \tau}{v_w}$$

where

 $\tau = {\rm transport}\ {\rm time}\ {\rm within}\ {\rm which}\ {\rm the}\ {\rm scattered}\ {\rm fermions}\ {\rm are}\ {\rm captured}\ {\rm by}\ {\rm the}\ {\rm wall}$

generated BAU :

$$\mathcal{N} \sim O(1)$$

 $\tau T \simeq \begin{cases} 1/T & \text{for quarks} \\ (10^2 \sim 10^3)/T & \text{for leptons} \end{cases}$

 $MC \text{ simulation} \Rightarrow$ forward scattering enhanced :

for top quark $\tau T\simeq 10\sim 10^3~$ max. at $v_w\simeq 1/\sqrt{3}~$

for this optimal case [top quark]

$$\frac{n_B}{s} \simeq 10^{-3} \cdot \frac{F_Y}{v_w T^3}$$

 $\implies F_Y/(v_w T^3) \sim O(10^{-7})$ would be sufficient to explain the BAU.

charge carriers : $(au T)_{
m quark} \ll au T$ for leptons, higgsino

• Calculation of $\Delta R \longrightarrow$ chiral charge flux

relative phase of $\langle \Phi_1 \rangle$ and $\langle \Phi_2 \rangle \Rightarrow \mathsf{CP}$ violating angle $\theta \Rightarrow \mathsf{Dirac}$ equation through Yukawa coupling

$$egin{aligned} &-f\langle\phi(x)
angle &= m(x) &\in \mathbf{C}\ i\partial\!\!\!\!/\psi(x) - m(x)P_R\psi(x) - m^*(x)P_L\psi(x) &= 0 \end{aligned}$$

Example

[CKN, N.P.B373('92)]

$$m(z) = m_0 \frac{1 + \tanh(az)}{2} \exp\left(-i\pi \frac{1 - \tanh(az)}{2}\right)$$

— no CP violation in the broken phase [$z \sim \infty$]

- $\Delta R \equiv R^s{}_{R \to L} \bar{R}^s{}_{R \to L}$ wall widht \simeq wave length of the carrier $\Rightarrow \Delta R \sim O(1)$ for larger energy, ΔR decays exponentially
- chiral charge flux normalized as [dimensionless]

$$\frac{\Gamma_Q}{v_w T^3 (Q_L - Q_R)}$$

Numerical results

T = 100 GeV

IV-2. Spontaneous baryogenesis

(i) in two-Higgs-doublet model [at T = 0]

$$\Delta \mathcal{L}_{\text{eff}} = -\frac{g^2 N_f}{24\pi^2} \theta(x) F_{\mu\nu}(x) \tilde{F}^{\mu\nu}(x)$$

$$-CP$$
-even $\Leftarrow \theta(x)$, $F\tilde{F}$: CP -odd

 $\Longrightarrow \dot{\theta} \sim$ chem.pot. for N_{CS}

At high-T, suppressed by $\left(\frac{m_t}{T}\right)^2$.

(ii) bias for the hypercharge instead of N_{CS} [CKN,P.L.B263('91)] neutral comp. of 2 Higgs scalars :

$$\phi_j^0(x) = \rho_j(x) e^{i\theta_j}, \qquad (j = 1, 2)$$

Suppose only ϕ_1 couples to the fermions. Eliminate θ_1 in Yukawa int. by anomaly-free $U(1)_Y$ trf. fermion kinetic term induces:

$$2\partial_{\mu}\theta_{1}(x) \left[\frac{1}{6}\bar{q}_{L}(x)\gamma^{\mu}q_{L}(x) + \frac{2}{3}\bar{u}_{R}(x)\gamma^{\mu}u_{R}(x) - \frac{1}{3}\bar{d}_{R}(x)\gamma^{\mu}d_{R}(x) - \frac{1}{2}\bar{l}_{L}(x)\gamma^{\mu}l_{L}(x) - \bar{e}_{R}(x)\gamma^{\mu}e_{R}(x)\right]$$

 $\langle \dot{ heta}_1
angle
eq 0$ during EWPT \Rightarrow charge potential

★ criticism by Dine-Thomas

[P.L.B328('94)]

The current is not the conserved Y-current, but the fermionic part of it.

Nonconservation of Y in the broken phase leads to

$$\partial_{\mu} \theta_1 \cdot j_Y^{\mu} \propto \frac{{m_t}^2}{T^2} F_{\mu\nu} \tilde{F}^{\mu\nu}$$

▷ The bias for Y exists where $(v/T)^2 > 0$. The sphaleron process is effective for $v < v_{co}$ \therefore The generated B is suppressed by $(v_{co}/T^2 \sim O(10^{-6}))$.

★ enhancement by diffusion

[CKN, P.L.B336('94)]

Diffusion carries Y into the symmetric phase. \longrightarrow nonlocal baryogenesis

for the profile

$$\langle \phi(z) \rangle = v \frac{1 - \tanh(az)}{2} \exp\left[-i \frac{\pi}{2} \frac{1 - \tanh(az)}{2}\right]$$

 z_{co} vs $\log_{10}[(n_B/s)(g_*/100)]$ with $v_{co} = \varphi(z_{co})$

V. Discussions

Minimal Standard Model :

 $\frac{\text{difficulties}}{\text{decoupling of sphaleron}} \begin{cases} \text{first order EWPT} & - \\ \text{decoupling of sphaleron} \\ \text{sufficient } CP \text{ violation} \end{cases}$

for $m_H > 70 {
m GeV}$

2-doublet extension of the SM $[\supset MSSM]$

• first order EWPT

 \implies constraints on mass parameters in scalar sector

• two mechanisms work

Problems to be solved

1. EWPT in the extended models

- effective potential with 3 order parameters bubble profile \Rightarrow wall width dynamics, CP violation
- Lattice MC simulation
- dynamics of EWPT
- 2. unified treatment of the mechanism Huet and Nelson, P.L.B355 ('95), P.R.D53 ('96)
- 3. relation to the observed CP violation CP-violating bubble wall profile