Electroweak Baryogenesis

K. Funakubo, Saga Univ.

content
I. Introduction
II. Sphaleron Process - $B+L$ violation
III. Electroweak Phase Transition (EWPT)
IV. Mechanism of Electroweak Baryogenesis
V. Discussions
K.F., Prog.Theor.Phys. 96 ('96) 475.
V.A. Rubakov and M.E. Shaposhnikov, hep-ph/9603208.
A.Cohen, et al., Ann.Rev.Nucl.Part.Sci. 33 ('93) 27.

I. Introduction

Baryon Asymmetry of the Universe (BAU)

$$
\begin{array}{r}
\Longleftrightarrow \frac{n_{B}}{s} \equiv \frac{n_{b}-n_{\bar{b}}}{s}=(0.21-0.90) \times 10^{-10} \\
\Longleftarrow \text { big-bang nucleosynthesis }
\end{array}
$$

...constant after decoupling of B-violating processes
evidence of BAU [Steigman, Ann.Rev.Astron.Astrop.14('76)]

1. no anti-matter in cosmic rays from our galaxy some anti-matter consistent as secondary products
2. nearby clusters of galaxies are stable a cluster: $(1 \sim 100) M_{\text {galaxy }} \simeq 10^{12 \sim 14} M_{\odot}$

Starting from a B-symmetric universe ...

$$
\begin{aligned}
\frac{n_{b}}{s} \simeq \frac{n_{\bar{b}}}{s} \sim 8 \times 10^{-11} & \text { at } T=38 \mathrm{MeV} \\
\sim 7 \times 10^{-20} & \text { at } T=20 \mathrm{MeV} \\
& N \bar{N} \text {-annihilation decouple }
\end{aligned}
$$

At $T=38 \mathrm{MeV}$,
mass within a causal region $=10^{-7} M_{\odot} \ll 10^{12} M_{\odot}$.

We must have the BAU $n_{B} / s=(0.21-0.90) \times 10^{-10}$ before the universe was cooled down to $T \simeq 38 \mathrm{MeV}$.

3 conditions for generation of BAU [Sakharov, '67]
(1) baryon number violation
(2) C and $C P$ violation
(3) departure from equilibrium
if B-violion is in equil. $\Longrightarrow n_{b}=n_{\bar{b}}$
(2)

If C or $C P$ is conserved, no B is generated:
This is because B is odd under C and $C P$.
indeed...
ρ_{0} : baryon-symmetric initial state of the universe s.t.

$$
\left\langle n_{B}\right\rangle_{0}=\operatorname{Tr}\left[\rho_{0} n_{B}\right]=0
$$

time evolution of $\rho \Leftrightarrow$ Liouville eq.: $i \hbar \frac{\partial \rho}{\partial t}+[\rho, H]=0$
If H is C - or $C P$-invariant, $[\rho, \mathcal{C}]=0$ or $[\rho, \mathcal{C P}]=0$

$$
\text { (spontaneous } C P \text { viol. } \Longrightarrow[\rho, \mathcal{C P}] \neq 0)
$$

Since $\mathcal{C} B \mathcal{C}^{-1}=-B$ and $\mathcal{C P} B C \mathcal{P}^{-1}=-B$

$$
\begin{aligned}
\left\langle n_{B}\right\rangle & =\operatorname{Tr}\left[\rho n_{B}\right]=\operatorname{Tr}\left[\rho \mathcal{C} n_{B} \mathcal{C}^{-1}\right]=-\operatorname{Tr}\left[\rho n_{B}\right] \\
& \text { or } \\
\left\langle n_{B}\right\rangle & =\operatorname{Tr}\left[\rho \mathcal{C P} n_{B}(\mathcal{C P})^{-1}\right]=-\operatorname{Tr}\left[\rho n_{B}\right]
\end{aligned}
$$

Both C and $C P$ must be violated to have $\left\langle n_{B}\right\rangle \neq 0$.

Consider 2 channels:

$$
\left\{\begin{array}{llll}
X \longrightarrow q \underline{q} & \Delta B=2 / 3 & \text { with branching } & r \\
X \longrightarrow \bar{q} & \Delta B=-1 / 3 & \text { with branching } & 1-r
\end{array}\right.
$$

in the decay of $X-\bar{X}$ pairs

$$
\langle\Delta B\rangle=\frac{2}{3} r-\frac{1}{3}(1-r)-\frac{2}{3} \bar{r}+\frac{1}{3}(1-\bar{r})=r-\bar{r}
$$

$\therefore C$ or $C P$ is conserved $(r=\bar{r}) \Longrightarrow \Delta B=0$
At $T \simeq m_{X}$, decay rate of $X=\Gamma_{D} \simeq \alpha m_{X}$
$\alpha \sim 1 / 40$ for gauge boson, $\alpha \sim 10^{-6 \sim-3}$ for Higgs boson
Hubble parameter: $H \sim 1.7 \sqrt{g_{*}} T^{2} / m_{P l}$
$g_{*} \simeq 10^{2 \sim 3}:$ massless degrees of freedom
$\therefore \Gamma_{D} \simeq H$ at $T \simeq m_{X}$
\Longrightarrow decay and production of $X \bar{X}$ are out of equil.

As we shall see, $B+L$ were washed out before EWPT.
$\therefore B-L$-conserving GUT (e.g. minimal $S U(5)$ model) will be useless to generate the BAU.
other candidates for generating BAU

- ${ }^{\exists}$ Majorana neutrino $\Rightarrow L$-violating interaction decoupling of L-violating interaction \Longrightarrow constraints on the neutrino mass
- Affleck-Dine mechanism in a supersymmetric model
[A-D, N.P. B174('86) 45]
\langle squark $\rangle \neq 0$ or \langle slepton $\rangle \neq 0$ along (nearly) flat directions, at high temperature
$\Longrightarrow B$ - and/or L-violation
- Electroweak Baryogenesis
(1) anomaly in $B+L$-current
(2) C-violation (chiral gauge)
$C P$-violation in KM matrix or extension of SM
(3) first-order EWPT with expanding bubble walls
- topological defects

EW string, domain wall \sim EW baryogenesis effective volume is too small, mass density of the universe
N.B.

The BAU may be generated by some combination of these mechanisms. Any way,

EWPT will be the last chance to obtain the BAU.

II. Sphaleron Process

II-1. Anomalous fermion number nonconservation axial anomaly in the standard model

$$
\begin{aligned}
\partial_{\mu} j_{B+L}^{\mu} & =\frac{N_{f}}{16 \pi^{2}}\left[g^{2} \operatorname{Tr}\left(F_{\mu \nu} \tilde{F}^{\mu \nu}\right)-g^{\prime 2} B_{\mu \nu} \tilde{B}^{\mu \nu}\right], \\
\partial_{\mu} j_{B-L}^{\mu} & =0,
\end{aligned}
$$

$N_{f}=$ number of the generations, $\tilde{F}^{\mu \nu} \equiv \frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma}$
integrating these equations,

$$
\begin{aligned}
B\left(t_{f}\right)-B\left(t_{i}\right) & =\frac{N_{f}}{32 \pi^{2}} \int_{t_{i}}^{t_{f}} d^{4} x\left[g^{2} \operatorname{Tr}\left(F_{\mu \nu} \tilde{F}^{\mu \nu}\right)-g^{\prime 2} B_{\mu \nu} \tilde{B}^{\mu \nu}\right] \\
& =N_{f}\left[N_{C S}\left(t_{f}\right)-N_{C S}\left(t_{i}\right)\right]
\end{aligned}
$$

where $N_{C S}$ is the Chern-Simons number defined, in the $A_{0}=0$ gauge, by

$$
N_{C S}=\frac{1}{32 \pi^{2}} \int d^{3} x \epsilon_{i j k}\left[g^{2} \operatorname{Tr}\left(F_{i j} A_{k}-\frac{2}{3} g A_{i} A_{j} A_{k}\right)-g^{\prime 2} B_{i j} B_{k}\right]
$$

For classical vacua of the gauge sector, $N_{C S} \in \mathbf{Z}$
$\Longleftrightarrow F_{i j}=B_{i j}=0$
$\Longleftrightarrow A=i U^{-1} d U$ and $B=d v$ with $U \in S U(2)$
$U: S^{3} \longrightarrow S U(2) \simeq S^{3}$ is characterized by its winding number, $\pi_{3}(S U(2)) \simeq \mathbb{Z}$. $\leftrightarrow N_{C S}$
background of gauge fields with $\Delta N_{C S}=1$
$\Rightarrow \Delta B=1$ for each generation
$(\because$ level-crossing phenomenon $) \longleftrightarrow$ index theorem
transition rate between configurations with $\Delta N_{C S}=1$介
WKB approximation:
$T=0$
(valley or constrained) instanton $=$ finite euclidean action tunneling probability $\sim \mathrm{e}^{-2 S_{\text {inst }}}=\mathrm{e}^{-8 \pi^{2} / g^{2}}$
for EW theory, $\mathrm{e}^{-2 S_{\text {inst }}} \simeq \mathrm{e}^{-378}=10^{-164}$
$T \neq 0$
[Affleck, P.R.L.46('81)]
${ }^{\exists}$ classical static saddle-point solution with finite energy I
top of the energy barrier dividing two classical vacua sphaleron solution [Manton, P.R.D28('83)]

$N_{C S} \in$ config. space

$$
E_{\mathrm{sph}}=\frac{2 M_{W}}{\alpha_{W}} B\left(\frac{\lambda}{g^{2}}\right) \simeq 10 \mathrm{TeV}
$$

λ :the Higgs self coupling, $\quad \alpha_{W}=g^{2} /(4 \pi)$

$$
1.5 \leq B \leq 2.7 \text { for } \lambda / g^{2} \in[0, \infty)
$$

$E_{\text {sph }}=$ finite $\Longrightarrow{ }^{\exists}$ transition over the barrier
sphaleron for $\theta_{W} \neq 0 \quad$ [Brihaye and Kunz, P.R.D50('94)] 2-doublet Higgs model squark vs sphaleron
[Peccei, Zhang and Kastening, P.L.B266('91)]
[Moreno, Oaknin and Quirós, hep-ph/9612212]

Transition Rate

[Arnold and McLerran, P.R.D36('87)]
\& $\omega_{-} /(2 \pi) \lesssim T \lesssim T_{C}$

$$
\Gamma_{\mathrm{sph}}^{(b)} \simeq k \mathcal{N}_{\mathrm{tr}} \mathcal{N}_{\mathrm{rot}} \frac{\omega_{-}}{2 \pi}\left(\frac{\alpha_{W}(T) T}{4 \pi}\right)^{3} \mathrm{e}^{-E_{\mathrm{sph}} / T}
$$

zero modes $\rightarrow\left\{\begin{array}{l}\mathcal{N}_{\mathrm{tr}}=26 \\ \mathcal{N}_{\text {rot }}=5.3 \times 10^{3}\end{array} \quad\right.$ for $\lambda=g^{2}$

$$
\begin{aligned}
\omega_{-}^{2} & \simeq(1.8 \sim 6.6) m_{W}^{2} \quad \text { for } 10^{-2} \leq \lambda / g^{2} \leq 10 \\
k & \simeq O(1)
\end{aligned}
$$

\& $T \gtrsim T_{C} \quad$ symmetric phase - no mass scale dimensional analysis:

$$
\Gamma_{\mathrm{sph}}^{(s)} \simeq \kappa\left(\alpha_{W} T\right)^{4}
$$

check by Monte Carlo simulation $\left\langle N_{C S}^{2}(t)\right\rangle=2 \Gamma V t$ as $t \rightarrow \infty$

$$
\begin{array}{ll}
\kappa>0.4 & S U(2) \text { gauge-Higgs system } \\
& \text { [Ambjørn, et al. N.P.B353('91)] } \\
\kappa=1.09 \pm 0.04 & S U(2) \text { pure gauge system } \\
& \text { [Ambjørn and Krasnitz, P.L.B362('95)] }
\end{array}
$$

We use 'sphaleron transition' even in the symmetric phase.

II-2. Washout of $B+L$
$B+L$ would be washed out after the EWPT, if the EWPT is second order or the sphaleron process does not decouple after it.

decoupling of sphaleron process $\Leftrightarrow \Gamma_{\text {sph }}<$ Hubble parameter

at $T=T_{C} \simeq 100 \mathrm{GeV}$,

$$
H\left(T_{C}\right)=\frac{\dot{R}(t)}{R(t)} \simeq 1.7 \sqrt{g_{*}} \frac{T_{C}^{2}}{m_{P l}} \simeq 10^{-13} \mathrm{GeV}
$$

$g_{*} \sim 100$: effective massless degrees of freedom
At $T>T_{C}$,

$$
\Gamma_{\mathrm{sph}} \simeq \Gamma_{\mathrm{sph}}^{(s)} / T^{3} \simeq \kappa \alpha_{W}^{4} T \sim 10^{-4} \mathrm{GeV} \gg H\left(T_{C}\right)
$$

$\Longrightarrow B+L$-changing process in equilibrium
relic baryon number after the washout particle number density $[m / T \ll 1$ and $\mu / T \ll 1$]

$$
\begin{aligned}
& n_{+}-n_{-}=\int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{2}}\left[\frac{1}{\mathrm{e}^{\beta\left(\omega_{k}-\mu\right)} \mp 1}-\frac{1}{\mathrm{e}^{\beta\left(\omega_{k}+\mu\right)} \mp 1}\right] \\
& \simeq \begin{cases}\frac{T^{3}}{3} \frac{\mu}{T} & \text { for bosons } \\
\frac{T^{3}}{6} \frac{\mu}{T} & \text { for fermions, }\end{cases} \\
& \quad \omega_{k}=\sqrt{\boldsymbol{k}^{2}+m^{2}}
\end{aligned}
$$

chemical equilibrium - all the gauge int., Yukawa, sphaleron

W^{-}	$u_{L(R)}$	$d_{L(R)}$	$e_{i L(R)}$	$\nu_{i L}$	ϕ^{0}	ϕ^{-}
μ_{W}	$\mu_{u_{L(R)}}$	$\mu_{d_{L(R)}}$	$\mu_{i L(R)}$	μ_{i}	μ_{0}	μ_{-}

gauge int. $\quad \Leftrightarrow \quad \mu_{W}=\mu_{d_{L}}-\mu_{u_{L}}=\mu_{i L}-\mu_{i}=\mu_{-}+\mu_{0}$
$|0\rangle \leftrightarrow u_{L} d_{L} d_{L} \nu_{L} \quad \Leftrightarrow \quad N_{f}\left(\mu_{u_{L}}+2 \mu_{d_{L}}\right)+\sum \quad \mu_{i}=0$
Quantum number densities [in unit of $T^{2} / 6$]

$$
\begin{aligned}
B= & N_{f}\left(\mu_{u_{L}}+\mu_{u_{R}}+\mu_{d_{L}}+\mu_{d_{R}}\right)=4 N_{f} \mu_{u_{L}}+2 N_{f} \mu_{W} \\
L= & \sum_{i}\left(\mu_{i}+\mu_{i L}+\mu_{i R}\right)=3 \mu+2 N_{f} \mu_{W}-N_{f} \mu_{0} \\
Q= & \frac{2}{3} N_{f}\left(\mu_{u_{L}}+\mu_{u_{R}}\right) \cdot 3-\frac{1}{3} N_{f}\left(\mu_{d_{L}}+\mu_{d_{R}}\right) \cdot 3 \\
& -\sum_{i}\left(\mu_{i L}+\mu_{i R}\right)-2 \cdot 2 \mu_{W}-2 m \mu_{-} \\
= & 2 N_{f} \mu_{u_{L}}-2 \mu-\left(4 N_{f}+4+2 m\right) \mu_{W}+\left(4 N_{f}+2 m\right) \mu_{0} \\
I_{3}= & \frac{1}{2} N_{f}\left(\mu_{u_{L}}-\mu_{d_{L}}\right) \cdot 3+\frac{1}{2} \sum_{i}\left(\mu_{i}-\mu_{i L}\right) \\
& -2 \cdot 2 \mu_{W}-2 \cdot \frac{1}{2} m\left(\mu_{0}-\mu_{-}\right) \\
= & -\left(2 N_{f}+m+4\right) \mu_{W}
\end{aligned}
$$

$$
\mu \equiv \sum_{i} \mu_{i}
$$

m : number of Higgs doublets

- symmetric phase
$\Longrightarrow Q=I_{3}=0$

$$
B=\frac{8 N_{f}+4 m}{22 N_{f}+13 m}(B-L), \quad L=-\frac{14 N_{f}+9 m}{22 N_{f}+13 m}(B-L)
$$

- broken phase
$\Longrightarrow Q=0$ and $\mu_{0}=0$

$$
\begin{aligned}
B & =\frac{8 N_{f}+4 m+8}{24 N_{f}+13 m+26}(B-L) \\
L & =-\frac{16 N_{f}+9 m+18}{24 N_{f}+13 m+26}(B-L)
\end{aligned}
$$

\therefore If $(B-L)_{\text {primordial }}=0, B=L=0$ at present!

To have nonzero BAU,
(i) we must have $B-L$ before the sphaleron process decouples, or
(ii) $B+L$ must be created at the first-order EWPT, and the sphaleron process must decouple immediately after that.
(i) \Leftarrow GUTs, Majorana ν, Affleck-Dine
(ii) $=$ Electroweak Baryogenesis

III. Electroweak Phase Transition (EWPT)

III-1. Static properties of the phase transition rate of any interacton at $T \sim T_{C} \ll$ Hubble parameter \Longrightarrow equil. thermodynamics applicable to static properties order of the transition, transition temperature, latent heat and surface tension (if it is first order)介
free energy density $=$ effective potential at $T \neq 0$
function of the order parameters and T

Example Minimal standard model (MSM)
order parameter: $\langle\Phi\rangle=\frac{1}{\sqrt{2}}\binom{0}{\varphi}$
a first order phase transition

$$
\varphi_{C} \equiv \lim _{T \uparrow T_{C}} \varphi(T) \neq 0
$$

one-loop level,

$$
V_{\mathrm{eff}}(\varphi ; T)=V_{\text {tree }}(\varphi)+V^{(1)}(\varphi ; T)
$$

where

$$
\begin{aligned}
V_{\text {tree }}(\varphi) & =-\frac{1}{2} \mu_{0}^{2} \varphi^{2}+\frac{\lambda_{0}}{4} \varphi^{4} \\
V^{(1)}(\varphi ; T) & =-\frac{i}{2} \sum_{A} c_{A} \int_{k} \log \operatorname{det}\left[i \mathcal{D}_{A}^{-1}(k ; \varphi)\right]
\end{aligned}
$$

with
μ_{0}^{2}, λ_{0} : bare parameters \leftarrow renormlized at $T=0$
A runs over all the partice species
$\left|c_{A}\right|$ counts the degrees of freedom, $\begin{cases}c_{A}>0 & \text { for bosons } \\ c_{A}<0 & \text { for fermions }\end{cases}$

$$
\begin{aligned}
\int_{k} \equiv & i T \sum_{n=-\infty}^{\infty} \int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3}} \\
& \text { with } k^{0}=\omega_{n}= \begin{cases}2 n \pi T & \text { for bosons, } \\
(2 n+1) \pi T & \text { for fermions. }\end{cases}
\end{aligned}
$$

W-boson :

$$
\begin{aligned}
& c_{W}=2 \\
& i \mathcal{D}_{W}^{-1}{ }_{W}^{\mu \nu}(k ; \varphi)=\left(-k^{2}+m_{W}^{2}(\varphi)\right) \eta^{\mu \nu}+\left(1-\frac{1}{\xi}\right) k^{\mu} k^{\nu}
\end{aligned}
$$

with $m_{W}(\varphi)=\frac{1}{2} g \varphi$
Dirac fermion :

$$
\begin{aligned}
& c_{f}=-2 \\
& i \mathcal{D}_{f}^{-1}(k ; \varphi)=\not k-m_{f}(\varphi)
\end{aligned}
$$

with $m_{f}(\varphi)=y_{f} \varphi / \sqrt{2}$

Higgs boson:
$m_{H}^{2}(\varphi)=3 \lambda \varphi^{2}-\mu^{2}-$ negative for small
\Longrightarrow complex $V_{\text {eff }}$
\longleftarrow sum over daisy diagrams, or improved perturbation
neglecting the Higgs contribution

$$
V_{\text {eff }}(\varphi ; T)=V_{0}(\varphi)+\bar{V}(\varphi ; T)
$$

where

$$
\begin{aligned}
& V_{0}(\varphi)=-\frac{1}{2} \mu^{2} \varphi^{2}+\frac{\lambda}{4} \varphi^{4}+2 B v_{0}^{2} \varphi^{2}+B \varphi^{4}\left[\log \left(\frac{\varphi^{2}}{v_{0}^{2}}\right)-\frac{3}{2}\right] \\
& \bar{V}(\varphi ; T)=\frac{T^{4}}{2 \pi^{2}}\left[6 I_{B}\left(a_{W}\right)+3 I_{B}\left(a_{Z}\right)-6 I_{F}\left(a_{t}\right)\right] \\
& B=\frac{3}{64 \pi^{2} v_{0}^{4}}\left(2 m_{W}^{4}+m_{Z}^{4}-4 m_{t}^{4}\right) \\
& I_{B, F}\left(a^{2}\right) \equiv \int_{0}^{\infty} d x x^{2} \log \left(1 \mp \mathrm{e}^{-\sqrt{x^{2}+a^{2}}}\right)
\end{aligned}
$$

with
$v_{0}=246 \mathrm{GeV}$ is the minimum of $V_{0}(\varphi)$
$a_{A}=m_{A}(\varphi) / T$
high-temperature expansion $[m / T \ll 1$]

$$
\begin{aligned}
I_{B}\left(a^{2}\right)= & -\frac{\pi^{4}}{45}+\frac{\pi^{2}}{12} a^{2}-\frac{\pi}{6}\left(a^{2}\right)^{3 / 2}-\frac{a^{4}}{16} \log \frac{\sqrt{a^{2}}}{4 \pi} \\
& -\frac{a^{4}}{16}\left(\gamma_{E}-\frac{3}{4}\right) \frac{a^{4}}{2}+O\left(a^{6}\right) \\
I_{F}\left(a^{2}\right)= & \frac{7 \pi^{4}}{360}-\frac{\pi^{2}}{24} a^{2}-\frac{a^{4}}{16} \log \frac{\sqrt{a^{2}}}{\pi}-\frac{a^{4}}{16}\left(\gamma_{E}-\frac{3}{4}\right)+O\left(a^{6}\right)
\end{aligned}
$$

For $T>m_{W}, m_{Z}, m_{t}$,

$$
V_{\mathrm{eff}}(\varphi ; T) \simeq D\left(T^{2}-T_{0}^{2}\right) \varphi^{2}-E T \varphi^{3}+\frac{\lambda_{T}}{4} \varphi^{4}
$$

where

$$
\begin{aligned}
D & =\frac{1}{8 v_{0}^{2}}\left(2 m_{W}^{2}+m_{Z}^{2}+2 m_{t}^{2}\right) \\
E & =\frac{1}{4 \pi v_{0}^{3}}\left(2 m_{W}^{3}+m_{Z}^{3}\right) \sim 10^{-2}
\end{aligned}
$$

$T_{0}^{2}=\frac{1}{2 D}\left(\mu^{2}-4 B v_{0}^{2}\right)$
$\lambda_{T}=\lambda$

$$
-\frac{3}{16 \pi^{2} v_{0}^{4}}\left(2 m_{W}^{4} \log \frac{m_{W}^{2}}{\alpha_{B} T^{2}}+m_{Z}^{4} \log \frac{m_{Z}^{2}}{\alpha_{B} T^{2}}-4 m_{t}^{4} \log \frac{m_{t}^{2}}{\alpha_{F} T^{2}}\right)
$$

with $\log \alpha_{B}=2 \log 4 \pi-2 \gamma_{E}$ and $\log \alpha_{F}=2 \log \pi-2 \gamma_{E}$

At $T_{C}, \varphi_{C}=\frac{2 E T_{C}}{\lambda_{T_{C}}}$

$$
\Gamma_{\mathrm{sph}}^{(b)} / T_{C}^{3}<H\left(T_{C}\right) \Longleftrightarrow \frac{\varphi_{C}}{T_{C}} \gtrsim 1
$$

upper bound on λ

$$
\left[m_{H}=\sqrt{2} \lambda v_{0}\right]
$$

$$
m_{H} \lesssim 46 \mathrm{GeV}
$$

\longleftrightarrow inconsistent with the lower bound $m_{H}>65 \mathrm{GeV}$

2-doublet extension of the MSM or MSSM: more scalars \longrightarrow more φ^{3}-temps
\Longrightarrow stronger first-order EWPT

MSSM with light stop [de Carlos and Espinosa, hep-ph/9703212] stop mass-squared matrix :

$$
\left(\begin{array}{cc}
m_{\tilde{q}}^{2}+\left(\frac{g_{1}^{2}}{24}-\frac{g_{2}^{2}}{8}\right) & \left(\rho_{u}^{2}-\rho_{d}^{2}\right)+\frac{1}{2} y_{t}^{2} \rho_{u}^{2}
\end{array} \frac{\frac{y_{t}}{\sqrt{2}}\left(\mu \rho_{d}+A \rho_{u} e^{-i \theta}\right)}{*} \begin{array}{l}
\left.m_{\tilde{t}}^{2}-\frac{g_{1}^{2}}{6}\left(\rho_{u}^{2}-\rho_{d}^{2}\right)+\frac{1}{2} y_{t}^{2} \rho_{u}^{2}\right)
\end{array}\right.
$$

where

$$
\left\langle\Phi_{d}\right\rangle=\frac{1}{\sqrt{2}}\binom{\rho_{d}}{0}, \quad\left\langle\Phi_{u}\right\rangle=\frac{1}{\sqrt{2}}\binom{0}{\rho_{u} \mathrm{e}^{i \theta}}
$$

$m_{\tilde{q}}=0$ or $m_{\tilde{t}}=0 \Longrightarrow$ smaller eigenvalue $\equiv m_{-}^{2} \sim O\left(\rho^{2}\right)$
\therefore high- T expansion

$$
\bar{V}_{\tilde{t}}\left(\rho_{i}, \theta ; T\right) \Rightarrow-\frac{T}{6 \pi}\left(m_{-}^{2}\right)^{3 / 2}
$$

φ_{C} / T_{C} vs m_{A} for various $\tan \beta\left(m_{h}\right)$

\triangle Monte Carlo Simulations [MSM][Jansen, N.P.B.Suppl.47('96)] effective fermion mass : $m_{f}(T) \sim O(T) \leftarrow$ nonzero modes

- 4-dim. $S U(2)$ system with a Higgs doublet
- 3-dim. $S U(2)$ system with a Higgs doublet and a triplet

time-component of the gauge field

only zero-freq. modes of the bosons survive as $T \rightarrow$ large
matching finite- T Green's functions with 4-dim. theory
$\Rightarrow T$-dependent parameters
shematic finite- T phase diagram [λ-fixed]

- EWPT is first order for $m_{H} \lesssim 70 \mathrm{GeV}$

The strength of the transition rapidly decreases as m_{H} increases.

- $\varphi_{C} / T_{C}>1$ is not satisfied for $m_{H} \geq 50 \mathrm{GeV}$
- The numerical results coincide with those of the continuum two-loop perturbation theory, for $m_{H} \leq 70 \mathrm{GeV}$.

III-2. Dynamics of the phase transition
first-order EWPT accompanying bubble nucleation/growth

Suppose that $V_{\text {eff }}\left(\varphi ; T_{C}\right)$ is known.
nucleation rate per unit time and unit volume:

$$
I(T)=I_{0} \mathrm{e}^{-\Delta F(T) / T}
$$

where

$$
\Delta F(T)=\frac{4 \pi}{3} r^{3}\left[p_{s}(T)-p_{b}(T)\right]+4 \pi r^{2} \sigma
$$

with

$$
p_{s}(T)=-V_{\mathrm{eff}}(0 ; T), \quad p_{b}(T)=-V_{\mathrm{eff}}(\varphi(T) ; T)
$$

supercooling $\longrightarrow p_{s}(T)<p_{b}(T)$
$\sigma \simeq \int d z(d \varphi / d z)^{2}$: surface energy density
radius of the critical bubble : $r_{*}(T)=\frac{2 \sigma}{p_{b}(T)-p_{s}(T)}$

$$
\begin{aligned}
& s=\frac{\partial V_{\mathrm{eff}}}{\partial T} \quad: \text { entropy density } \\
& \rho=V_{\mathrm{eff}}-T s \quad: \text { energy density }
\end{aligned}
$$

How the EWPT proceeds ?
$f(t)$: fraction of space converted to the broken phase
where

$$
f(t)=\int^{t} d t^{\prime} I\left(T\left(t^{\prime}\right)\right)\left[1-f\left(t^{\prime}\right)\right] V\left(t^{\prime}, t\right)
$$

$V\left(t^{\prime}, t\right)$: volume of a bubble at t which was nucleated at t^{\prime}

$$
V\left(t^{\prime}, t\right)=\frac{4 \pi}{3}\left[r_{*}\left(T\left(t^{\prime}\right)\right)+\int_{t^{\prime}}^{t} d t^{\prime \prime} v\left(T\left(t^{\prime \prime}\right)\right)\right]^{3}
$$

$T=T(t) \Leftarrow \rho=\left(\pi^{2} / 30\right) g_{*} T^{4} \propto R^{-4}$ for RD universe
$v(T)$: wall velocity
one-loop $V_{\text {eff }}$ of MSM with $m_{H}=60 \mathrm{GeV}$ and $m_{t}=120 \mathrm{GeV}$
[Carrington and Kapsta, P.R.D47('93)]
At $6.5 \times 10^{-14} \mathrm{sec}$, bubbles began to nucleate.
[A characteristic time scale of the EW processes is $O\left(10^{-26}\right)$ sec.]

very small supercooling : $\frac{T_{C}-T_{N}}{T_{C}} \simeq 2.5 \times 10^{-4}$
90% of the universe is converted by bubble growth
weakly first order \Longleftrightarrow small φ_{C} and/or lower barrier height
$\Longrightarrow\{$ nucleation dominance over growth large fluctuation between the two phases
IV. Mechanism of Electroweak Baryogenesis At $T \simeq T_{C}$, hierarchy of time scales:

EW $\quad t_{E W} \simeq 1 \mathrm{GeV}^{-1}$
Yukawa $\quad t_{Y} \simeq\left(m_{W} / m_{f}\right)^{4} \mathrm{GeV}^{-1}$
QCD $\quad t_{s} \simeq 0.1 \mathrm{GeV}^{-1}$
Hubble $\quad H^{-1} \simeq 10^{13} \mathrm{GeV}^{-1}$
sphaleron $\quad t_{\text {sph }}=\left(\kappa \alpha_{W}^{4} T\right)^{-1} \simeq \kappa^{-1} \cdot 10^{4} \mathrm{GeV}^{-1}$
wall motion $t_{\text {wall }} \simeq 0.01 \sim 4 \mathrm{GeV}^{-1}$

$$
t_{\text {wall }}=\frac{\text { wall width }}{\text { wall velocity }} \simeq \frac{0.01 \sim 0.04 \mathrm{GeV}^{-1}}{0.1 \sim 0.8}
$$

$\triangleright t_{E W} \ll H^{-1} \Rightarrow$ all particles are in kinetic equilibrium at the same temperature
\triangleright for $m_{f} \lesssim 0.1 \mathrm{GeV}, \quad t_{Y} \sim H^{-1}$
\therefore Yukawa int. of light fermions are out of chemical equil.
\triangleright some of flavor-changing int. are out of chemical equil.

$$
\because\left|V_{u b}\right|,\left|V_{c b}\right|,\left|V_{t d}\right|,\left|V_{t s}\right| \ll 1
$$

$\triangleright t_{\text {wall }} \ll t_{\text {sph }}$
\Rightarrow sphaleron process is out of chemical equil. near the bubble wall even in the symmetric phase
\therefore Nonequilibrium state is realized near expanding bubble walls.

$v_{c o} \simeq 0.01 v_{0} \Longleftarrow E_{\mathrm{sph}} / T_{C} \simeq 1$
bubble wall \Leftarrow classical config. of gauge-Higgs system

Effects of $C P$ violation:

- interactions between the particles and the bubble wall
- propagation of the particles in the plasma
\Downarrow
generation of baryon number through sphaleron process \Downarrow
decoupling of sphaleron process in the broken phase
two scenarios to realize EW baryogenesis:
- spontaneous baryogenesis + diffusion classical, adiabatic
- charge transport scenario quantum mechanical, nonlocal

Both need CP violation other than KM matrix \Longleftrightarrow extension of the MSM
two-Higgs-doublet model, MSSM, . . .

IV-1. Charge transport mechanism
[Nelson, el al. N.P.B373('92)]
CP violation in the Higgs sector [spacetime-dependent] \Downarrow
difference in reflections of chiral fermions and antifermions \Downarrow
net chiral charge flux into the symmetric phase
\Downarrow
sphaleron transition converts the charge into B
change of distribution functions by the chiral charge flux \Leftarrow Boltzmann equations
bubble wall velocity \simeq const. \Rightarrow constant chiral charge flux \Rightarrow bias on free energy along B [stationary nonequilibrium]

$Q_{L(R)}^{i}$: charge of a left(right)-handed fermion of species i $R^{s}{ }_{R \rightarrow L}$: reflection coeff. for the right-handed fermion incident from the symmetric phase region
$\bar{R}^{s}{ }_{R \rightarrow L}$: the same as above for the right-handed antifermion <injected charge into symmetric phase〉 brought by the fermions and antifermions in the symmetric phase :

$$
\begin{aligned}
& \Delta{Q_{i}{ }^{s}}_{=}\left[\left({\left.Q_{R}{ }^{i}-Q_{L}{ }^{i}\right) R^{s}{ }_{L \rightarrow R}+\left(-{Q_{L}}^{i}+Q_{R}{ }^{i}\right) \bar{R}^{s}{ }_{R \rightarrow L}}\right.\right. \\
& \left.+\left(-{Q_{L}}^{i}\right)\left(T^{s}{ }_{L \rightarrow L}+T^{s}{ }_{L \rightarrow R}\right)-\left(-Q_{R}{ }^{i}\right)\left(\bar{T}^{s}{ }_{R \rightarrow L}+\bar{T}^{s}{ }_{R \rightarrow R}\right)\right] f^{s}{ }_{L i} \\
& +\left[\left({Q_{L}}^{i}-Q_{R}{ }^{i}\right) R^{s}{ }_{R \rightarrow L}+\left(-Q_{R}{ }^{i}+{Q_{L}}^{i}\right) \bar{R}^{s}{ }_{L \rightarrow R}\right. \\
& \left.+\left(-{Q_{R}}^{i}\right)\left(T^{s}{ }_{R \rightarrow L}+T^{s}{ }_{R \rightarrow R}\right)-\left(-Q_{L}{ }^{i}\right)\left(\bar{T}^{s}{ }_{L \rightarrow L}+\bar{T}^{s}{ }_{L \rightarrow R}\right)\right] f^{s}{ }_{R i}
\end{aligned}
$$

the same brought by the transmission from the broken phase

$$
\begin{aligned}
\Delta Q_{i}{ }^{b}= & Q_{L}{ }^{i}\left(T^{b}{ }_{L \rightarrow L} f^{b}{ }_{L i}+T^{b}{ }_{R \rightarrow L} f^{b}{ }_{R i}\right) \\
& +Q_{R}{ }^{i}\left(T^{b}{ }_{L \rightarrow R} f^{b}{ }_{L i}+T^{b}{ }_{R \rightarrow R} f^{b}{ }_{R i}\right) \\
& +\left(-Q_{L}{ }^{i}\right)\left(\bar{T}^{b}{ }_{R \rightarrow L} f^{b}{ }_{L i}+\bar{T}^{b}{ }_{L \rightarrow L} f^{b}{ }_{R i}\right) \\
& +\left(-Q_{R}{ }^{i}\right)\left(\bar{T}^{b}{ }_{R \rightarrow R} f^{b}{ }_{L i}+\bar{T}^{b}{ }_{L \rightarrow R} f^{b}{ }_{R i}\right)
\end{aligned}
$$

by use of

$$
\text { unitarity: } \quad R_{L \rightarrow R}^{S}+T_{L \rightarrow L}^{S}+T_{L \rightarrow R}^{S}=1, \quad \text { etc. }
$$

reciprocity

$$
T^{s}{ }_{R \rightarrow L}+T^{s}{ }_{R \rightarrow R}=T^{b}{ }_{L \rightarrow L}+T^{b}{ }_{R \rightarrow L}, \quad \text { etc. }
$$

$$
f_{i L}^{s(b)}=f_{i R}^{s(b)} \equiv f_{i}^{s(b)}
$$

we obatin

$$
\Delta Q^{s}{ }_{i}+\Delta Q^{b}{ }_{i}=\left(Q_{L}{ }^{i}-Q_{R}{ }^{i}\right)\left(f_{i}^{s}-f_{i}^{b}\right) \Delta R
$$

where

$$
\Delta R \equiv R_{R \rightarrow L}^{s}-\bar{R}_{R \rightarrow L}^{s}
$$

total flux injected into the symmetric phase region

$$
\begin{aligned}
F_{Q}^{i}= & \frac{Q_{L}{ }^{i}-Q_{R}^{i}}{4 \pi^{2} \gamma} \int_{m_{0}}^{\infty} d p_{L} \int_{0}^{\infty} d p_{T} p_{T} \\
& \times\left[f_{i}^{s}\left(p_{L}, p_{T}\right)-f_{i}^{b}\left(-p_{L}, p_{T}\right)\right] \Delta R\left(\frac{m_{0}}{a}, \frac{p_{L}}{a}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
f_{i}{ }^{s}\left(p_{L}, p_{T}\right) & =\frac{p_{L}}{E} \frac{1}{\exp \left[\gamma\left(E-v_{w} p_{L}\right) / T\right]+1} \\
f_{i}{ }^{b}\left(-p_{L}, p_{T}\right) & =\frac{p_{L}}{E} \frac{1}{\exp \left[\gamma\left(E+v_{w} \sqrt{p_{L}^{2}-m_{0}^{2}}\right) / T\right]+1}
\end{aligned}
$$

are the fermion flux densities in the symmetric and broken phases.
m_{0} : fermion mass in the broken pase
v_{w} : wall velocity

$$
\begin{aligned}
& \gamma=1 / \sqrt{1-v_{w}^{2}} \\
& \quad E=\sqrt{p_{L}^{2}+p_{T}^{2}}
\end{aligned}
$$

p_{T} : transverse momentum
$1 / a$: wall width

$\Delta R \Longrightarrow$ effects of CP violation

- MSM - KM matrix dispersion relation of the fermion $\sim O\left(\alpha_{W}\right)$
[Farrar and Shaposhnikov, P.R.D50('94)]
- decoherence by QCD effects (short range)
- CP violation in mass matrices - Higgs sector \& SUSY-br. tree-level quantum scattering by the bubble wall
choich of the charge :
$\left.\begin{array}{c}Q_{L}-Q_{R} \neq 0 \\ \text { conserved in the symmetric phase }\end{array}\right\} \Longrightarrow Y, \quad I_{3}$
change of the state by the injection of the flux
assume :
- bubble is macroscopic and expand with const. velo.
- deep in the sym. phase, elementary processes are fast enough to realize a new stationary state
\Longrightarrow chemical potential argument
charged-current interection :

$$
\mu_{W}=\mu_{0}+\mu_{-}=-\mu_{t_{L}}+\mu_{b_{L}}=-\mu_{\nu_{\tau}}+\mu_{\tau_{L}}
$$

Yukawa interaction :

$$
\mu_{0}=-\mu_{t_{L}}+\mu_{t_{R}}=-\mu_{b_{L}}+\mu_{b_{R}}=-\mu_{\tau_{L}}+\mu_{\tau_{R}}
$$

no further independent relations
chem. potentials of conserved or almost conserved quantum numbers :

$$
\mu_{B-L}, \quad \mu_{Y}, \quad \mu_{I_{3}} ; \quad \mu_{B}
$$

We assume the sphaleron process is out of equilibrium.

$$
\begin{aligned}
\mu_{t_{L}\left(b_{L}\right)} & =\frac{1}{3} \mu_{B}+\frac{1}{3} \mu_{B-L}+\frac{1}{6} \mu_{Y}+(-) \frac{1}{2} \mu_{I_{3}} \\
\mu_{t_{R}} & =\frac{1}{3} \mu_{B}+\frac{1}{3} \mu_{B-L}+\frac{2}{3} \mu_{Y} \\
\mu_{b_{R}} & =\frac{1}{3} \mu_{B}+\frac{1}{3} \mu_{B-L}-\frac{1}{3} \mu_{Y} \\
\mu_{\tau_{L}\left(\nu_{\tau}\right)} & =-\mu_{B-L}-\frac{1}{2} \mu_{Y}+(-) \frac{1}{2} \mu_{I_{3}} \\
\mu_{0(-)} & =+(-) \frac{1}{2} \mu_{Y}-\frac{1}{2} \mu_{I_{3}} \\
\mu_{W} & =-\mu_{I_{3}}
\end{aligned}
$$

baryon and lepton number densities:

$$
\begin{aligned}
n_{B} & =3 \cdot \frac{1}{3} \cdot \frac{T^{2}}{6}\left(\mu_{t_{L}}+\mu_{t_{R}}+\mu_{b_{L}}+\mu_{b_{R}}\right) \\
& =\frac{T^{2}}{9}\left(2 \mu_{B}+2 \mu_{B-L}+\mu_{Y}\right) \\
n_{L} & =\frac{T^{2}}{6}\left(\mu_{\nu_{\tau}}+\mu_{\tau_{L}}+\mu_{\tau_{R}}\right)=\frac{T^{2}}{6}\left(-3 \mu_{B-L}-2 \mu_{Y}\right)
\end{aligned}
$$

If $n_{B}=n_{L}=0$ before the injection of the hypercharge flux,

$$
\mu_{B-L}=-\frac{2}{3} \mu_{Y}, \quad \mu_{B}=\frac{1}{6} \mu_{Y}
$$

hypercharge density:

$$
\begin{gathered}
\frac{Y}{2}=\frac{T^{2}}{6}\left\{3\left[\frac{1}{6}\left(\mu_{t_{L}}+\mu_{b_{L}}\right)+\frac{2}{3} \mu_{t_{R}}-\frac{1}{3} \mu_{b_{R}}\right)\right] \\
\\
\left.-\frac{1}{2}\left(\mu_{\nu_{\tau}}+\mu_{\tau_{L}}\right)-\mu_{\tau_{R}}\right\}+\frac{T^{2}}{3} \frac{1}{2}\left(\mu_{0}-\mu_{-}\right) m \\
= \\
\frac{T^{2}}{6}\left(m+\frac{5}{3}\right) \mu_{Y} \quad[m=\# \text { (Higgs doublets) }] \\
\therefore \quad \mu_{B}=\frac{Y}{2(m+5 / 3) T^{2}}
\end{gathered}
$$

Integrating the equation for \dot{n}_{B},

$$
n_{B}=-\frac{\Gamma_{\mathrm{sph}}}{T} \int d t \mu_{B}=-\frac{\Gamma_{\mathrm{sph}}}{2(m+5 / 3) T^{3}} \int d t Y
$$

where

$$
\int d t Y=\int_{-\infty}^{z / v_{w}} d t \rho_{Y}\left(z-v_{w} t\right)=\frac{1}{v_{w}} \int_{0}^{\infty} d z \rho_{Y}(z)
$$

$$
[z=\text { distance from the bubble wall }]
$$

The last integral is approximated as

$$
\frac{1}{v_{w}} \int_{0}^{\infty} d z \rho_{Y}(z) \simeq \frac{F_{Y} \tau}{v_{w}}
$$

where
$\tau=$ transport time within which the scattered fermions are captured by the wall
generated BAU :

$$
\frac{n_{B}}{s} \simeq \mathcal{N} \frac{100}{\pi^{2} g_{*}} \cdot \kappa \alpha_{W}^{4} \cdot \frac{F_{Y}}{v_{w} T^{3}} \cdot \tau T
$$

where

$$
\begin{aligned}
\mathcal{N} & \sim O(1) \\
\tau T & \simeq \begin{cases}1 & \text { for quarks } \\
10^{2} \sim 10^{3} & \text { for leptons }\end{cases}
\end{aligned}
$$

MC simulation \Rightarrow forward scattering enhanced :

for top quark

$$
\tau T \simeq 10 \sim 10^{3} \text { max. at } v_{w} \simeq 1 / \sqrt{3}
$$

for this optimal case [top quark]

$$
\frac{n_{B}}{s} \simeq 10^{-3} \cdot \frac{F_{Y}}{v_{w} T^{3}}
$$

$\Longrightarrow F_{Y} /\left(v_{w} T^{3}\right) \sim O\left(10^{-7}\right)$ would be sufficient to explain the BAU.
charge carriers :
$(\tau T)_{\text {quark }} \ll \tau T$ for leptons, higgsino, Wino, Bino

- Calculation of $\Delta R \longrightarrow$ chiral charge flux
relative phase of $\left\langle\Phi_{1}\right\rangle$ and $\left\langle\Phi_{2}\right\rangle \Rightarrow \mathrm{CP}$ violating angle θ
\Longrightarrow Dirac equation through Yukawa coupling

$$
\begin{gathered}
-f\langle\phi(x)\rangle=m(x) \quad \in \mathbf{C} \\
i \not \partial \psi(x)-m(x) P_{R} \psi(x)-m^{*}(x) P_{L} \psi(x)=0
\end{gathered}
$$

(i) perturbative method
[FKOTT, P.R.D50('94)]
(ii) numerical method [CKN, N.P.B373('92), FKOT, P.T.P.95('96)]

ΔR as a function of $\left(m, a, p_{L}\right)$

chiral charge flux $F_{Q}\left(T, m, a, v_{w}\right)$
Example

$$
m(z)=m_{0} \frac{1+\tanh (a z)}{2} \exp \left(-i \pi \frac{1-\tanh (a z)}{2}\right)
$$

- no CP violation in the broken phase $[z \sim \infty]$
- $\Delta R \equiv R^{s}{ }_{R \rightarrow L}-\bar{R}^{s}{ }_{R \rightarrow L}$
wall width \simeq wave length of the carrier $\Rightarrow \Delta R \sim O(1)$ for larger energy, ΔR decays exponentially
- chiral charge flux
normalized as

$$
\frac{F_{Q}}{v_{w} T^{3}\left(Q_{L}-Q_{R}\right)}
$$

[dimensionless]

Numerical results

$$
\begin{aligned}
\frac{n_{B}}{s} & \simeq \mathcal{N} \frac{100}{\pi^{2} g_{*}} \cdot \kappa \alpha_{W}^{4} \cdot \frac{F_{Y}}{v_{w} T^{3}} \cdot \tau T \\
& \simeq 10^{-3} \cdot \frac{F_{Y}}{v_{w} T^{3}} \quad \text { for an optimal case (top quark) }
\end{aligned}
$$

IV-2. Spontaneous baryogenesis
(i) in two-Higgs-doublet model [at $T=0$]

$$
\begin{aligned}
& \Delta \mathcal{L}_{\text {eff }}=-\frac{g^{2} N_{f}}{24 \pi^{2}} \theta(x) F_{\mu \nu}(x) \tilde{F}^{\mu \nu}(x) \\
& -C P \text {-even } \Leftarrow \theta(x), F \tilde{F}: C P \text {-odd }
\end{aligned}
$$

$\Longrightarrow \dot{\theta} \sim$ chem.pot. for $N_{C S}$
At high- T, suppressed by $\left(\frac{m_{t}}{T}\right)^{2}$.
(ii) bias for the hypercharge instead of $N_{C S}$ [CKN,P.L.B263('91)] neutral comp. of 2 Higgs scalars:

$$
\phi_{j}^{0}(x)=\rho_{j}(x) \mathrm{e}^{i \theta_{j}}, \quad(j=1,2)
$$

Suppose only ϕ_{1} couples to the fermions.
Eliminate θ_{1} in Yukawa int. by anomaly-free $U(1)_{Y}$ trf. fermion kinetic term induces:

$$
\begin{aligned}
& 2 \partial_{\mu} \theta_{1}(x)\left[\frac{1}{6} \bar{q}_{L}(x) \gamma^{\mu} q_{L}(x)+\frac{2}{3} \bar{u}_{R}(x) \gamma^{\mu} u_{R}(x)\right. \\
& \left.\quad-\frac{1}{3} \bar{d}_{R}(x) \gamma^{\mu} d_{R}(x)-\frac{1}{2} \bar{l}_{L}(x) \gamma^{\mu} l_{L}(x)-\bar{e}_{R}(x) \gamma^{\mu} e_{R}(x)\right]
\end{aligned}
$$

$\left\langle\dot{\theta}_{1}\right\rangle \neq 0$ during EWPT \Rightarrow charge potential
\triangleright The current is not the conserved Y-current, but the fermionic part of it.
Nonconservation of Y in the broken phase leads to

$$
\partial_{\mu} \theta_{1} \cdot j_{Y}^{\mu} \propto \frac{m_{t}^{2}}{T^{2}} F_{\mu \nu} \tilde{F}^{\mu \nu}
$$

\triangleright The bias for Y exists where $(v / T)^{2}>0$.
The sphaleron process is effective for $v<v_{c o}$
\therefore The generated B is suppressed by $\left(v_{c o} / T^{2} \sim O\left(10^{-6}\right)\right.$.

* enhancement by diffusion

Diffusion carries Y into the symmetric phase.
\longrightarrow nonlocal baryogenesis
for the profile

$$
\langle\phi(z)\rangle=v \frac{1-\tanh (a z)}{2} \exp \left[-i \frac{\pi}{2} \frac{1-\tanh (a z)}{2}\right]
$$

$z_{c o}$ vs $\log _{10}\left[\left(n_{B} / s\right)\left(g_{*} / 100\right)\right]$ with $v_{c o}=\varphi\left(z_{c o}\right)$

— almost independent of $z_{c o}$

V. Discussions

Minimal Standard Model :
difficulties $\left\{\begin{array}{c}\text { first order EWPT } \\ \text { decoupling of sphaleron } \\ \text { sufficient } C P \text { violation }\end{array}\right]$ for $m_{H}>70 \mathrm{GeV}$
\Downarrow
2-doublet extension of the SM [\supset MSSM]

- first order EWPT
\Longrightarrow constraints on mass parameters in scalar sector
- two mechanisms work

Problems to be solved

1. EWPT in the extended models

- effective potential with 3 order parameters
bubble profile \Rightarrow wall width
dynamics, $C P$ violation
- Lattice MC simulation
- dynamics of EWPT

2. unified treatment of the mechanism

> Huet and Nelson, P.L.B355 ('95), P.R.D53 ('96)
> field theory in $C P$-viol. background
3. relation to the observed $C P$ violation

- phases of the soft-SUSY-breaking parameters
chargino mass $=\left(\begin{array}{cc}M_{2} & -\frac{i}{\sqrt{2}} g_{2} v_{u} e^{i \theta} \\ -\frac{i}{\sqrt{2}} g_{2} v_{d} & -\mu\end{array}\right) \Rightarrow$ complex parameters
- $C P$-violating bubble wall profile
\Longrightarrow Higgs sector $C P$ violation

