Higgs Mass and Electroweak Phase Transition

K. Funakubo, Saga Univ.

March 4, '05 @Hiroshima Univ.

1. Introduction

Our goal is to explain

the Baryon Asymmetry of the Universe

$$\frac{n_B}{s} \equiv \frac{n_b - n_{\bar{b}}}{s} \simeq (0.37 - 0.88) \times 10^{-10}$$

 \longleftarrow BBN, consistent with WMAP data

1. GUTs: \star 1 multiplet $\exists q, l \Longrightarrow B$ and/or L violation (cf. B - L is conserved in the minimal SU(5) GUT) \star out-of-equil. decay of the heavy bosons (leptoquarks) with CP violation

constrained by the proton lifetime $\tau_p > 10^{32}$ yr

 \Rightarrow new possibilities of *B*-genesis

2. Leptogenesis, Affleck-Dine : $B = -L \neq 0$ via sphaleron process in equilibrium

3. Electroweak Baryogenesis

- (B+L)-genesis by the sphaleron process
- the electroweak phase transition (EWPT) must be strongly first order

 $\Rightarrow \Gamma_{\rm sph}^{\rm (sym)} \sim 10^{-1} {\rm GeV} \gg H(100 {\rm GeV}) \sim 10^{-14} {\rm GeV} \gg \Gamma_{\rm sph}^{\rm (br)} \sim e^{-E_{\rm sph}/T}$

- needs CP violation other than the KM phase
- free from proton-decay problem

 $\Gamma_{\Delta B \neq 0}(T=0) \simeq e^{-2S_{\text{instanton}}} \simeq 10^{-164}$

related to physics within our reach

plan of my talk ...

2. Why electroweak phase transition(EWPT) ?

3. Higgs mass and EWPT

4. EWPT in the MSSM

- 5. EWPT in the NMSSM
- 6. Summary

review articles

- KF, Prog. Theor. Phys. 96 (1996) 475
- Rubakov and Shaposhnikov, Phys. Usp. 39 (1996) 461-502 (hep-ph/9603208)
- Riotto and Trodden, Ann. Rev. Nucl. Part. Sci. 49 (1999) 35 (hep-ph/9901362)
- Bernreuther, Lect. Notes Phys. 591 (2002) 237 (hep-ph/0205279)

very elementary article on Big Bang Cosmology

http://dirac.phys.saga-u.ac.jp/~funakubo/BAU

2. Why electroweak phase transition(EWPT) ?

key words

\bigstar anomalous (B+L)-nonconservation \bigstar

\star sphaleron \star

\star electroweak phase transition \star

***** Anomalous fermion number nonconservation

$$\partial_{\mu} j^{\mu}_{B+L} = \frac{N_f}{16\pi^2} [g^2 \text{Tr}(F_{\mu\nu} \tilde{F}^{\mu\nu}) - g'^2 B_{\mu\nu} \tilde{B}^{\mu\nu}]$$
$$\partial_{\mu} j^{\mu}_{B-L} = 0$$

 $N_f =$ number of the generations $ilde{F}^{\mu
u} \equiv rac{1}{2} \epsilon^{\mu
u
ho\sigma} F_{
ho\sigma}$

integrating these equations,

$$\frac{B(t_f) - B(t_i)}{32\pi^2} = \frac{N_f}{32\pi^2} \int_{t_i}^{t_f} d^4x \left[g^2 \text{Tr}(F_{\mu\nu} \tilde{F}^{\mu\nu}) - g'^2 B_{\mu\nu} \tilde{B}^{\mu\nu} \right] \\
= N_f \left[N_{CS}(t_f) - N_{CS}(t_i) \right]$$

where N_{CS} is the Chern-Simons number: in the $A_0 = 0$ gauge,

$$N_{CS}(t) = \frac{1}{32\pi^2} \int d^3x \,\epsilon_{ijk} \Big[g^2 \mathrm{Tr} \left(F_{ij} A_k - \frac{2}{3} g A_i A_j A_k \right) - g'^2 B_{ij} B_k \Big]_t$$

classical vacua of the gauge sector: $\mathcal{E} = \frac{1}{2}(\mathbf{E}^2 + \mathbf{B}^2) = 0$ $\iff F_{\mu\nu} = B_{\mu\nu} = 0$ $\iff A = iU^{-1}dU$ and B = dv with $U \in SU(2)$ $\therefore U(\mathbf{x}) : S^3 \ni \mathbf{x} \longrightarrow U \in SU(2) \simeq S^3$ $\pi_3(S^3) \simeq \mathbf{Z} \Rightarrow U(\mathbf{x})$ is classified by an integer N_{CS}

> Energy vacuum 0 $N_{CS}=1$ configuration space vacuum $N_{CS}=0$

background U changes with $\Delta N_{CS} = 1$ $\implies \Delta B = 1 \ (\Delta L = 1)$ in each (left-) generation

Transition of the field config. with $\Delta B \neq 0$

quantum tunneling	low temperature
thermal activation	high temperature

transition rate with $N_{CS} = 1 \iff \mathsf{WKB}$ approx.

tunneling amplitude $\simeq e^{-S_{\text{instanton}}} = e^{-4\pi^2/g^2}$ At T = 0,

instanton

* 4d solution with finite euclidean action
* integer Pontrjagin index
$$\sim \int d^4 x_E F_{\mu\nu} \tilde{F}^{\mu\nu}$$

11

What is Sphaleron ?

sphaleros : $\sigma \varphi \alpha \lambda \epsilon \rho o \sigma =$ 'ready to fall'

a saddle-point solution of 4d SU(2) gauge-Higgs system [Klinkhammer & Manton, PRD30 ('84)]

 $E_{\rm sph} = \frac{4\pi v_0}{g_2} \mathcal{E}(\lambda/g_2^2) = 5.1 \text{TeV} \times (1.61 - 2.68) = 8.2 - 13.7 \text{ TeV}$ $(E_{\rm sph} \simeq 9.4 \text{TeV for } m_h = 120 \text{GeV})$

\star unstable

- \star static (3d) solution with finite energy
- ★ Chern-Simons No. = "1/2"

 \implies over-barrier transition at finite temperature

$$\Gamma_{\rm sph} \sim e^{-E_{\rm sph}/T}$$

***** Transition rate

[Arnold and McLerran, P.R.D36('87)]

symmetric phase — no mass scale

$$\Gamma_{\rm sph}^{(s)} \simeq \kappa (\alpha_W T)^4$$

 $\langle N_{CS}(t)N_{CS}(0)\rangle = \langle N_{CS}\rangle^2 + Ae^{-2\Gamma V t}$ as $t \to \infty$ ▷ Monte Carlo simulation

SU(2) gauge-Higgs system [Ambjørn, et al. N.P.B353('91)] $\kappa > 0.4$ $\kappa = 1.09 \pm 0.04$ SU(2) pure gauge system [Ambjørn and Krasnitz, P.L.B362('95)] 'sphaleron transition' even in the symmetric phase.

reaction rate: $\Gamma(T) > H(t) \iff$ the process is in chemical equilibrium

$$H(t) \equiv \frac{\dot{a}(t)}{a(t)} \simeq \sqrt{\frac{8\pi G}{3}} \rho \simeq 1.66\sqrt{g_*} \frac{T^2}{m_P l}$$

$$\begin{split} \Gamma(T) &\to \text{ time scale of interactions} \\ \text{mean free path} : \lambda \cdot \sigma &= \frac{1}{n} \\ m \ll T \Rightarrow \lambda \simeq \overline{t} = \text{mean free time} \\ n &= g \int \frac{d^3 k}{(2\pi)^3} \frac{1}{e^{\omega_k/T} \mp 1} \quad \stackrel{m \ll T}{\simeq} \quad g \begin{cases} \frac{\zeta(3)}{\pi^2} T^3 & \bullet \\ \frac{3}{4} \frac{\zeta(3)}{\pi^2} T^3 & \bullet \\ \frac{3}{4} \frac{\zeta(3)}{\pi^2} T^3 & \zeta(3) = 1.2020569 \cdots \\ \frac{m \gg T}{\simeq} \quad g \left(\frac{mT}{2\pi}\right)^{3/2} e^{-m/T} \end{split}$$

For relativistic particles at
$$T$$
, $\sigma \simeq \frac{\alpha^2}{s} \simeq \frac{\alpha^2}{T^2} \Longrightarrow \left(\lambda \simeq \frac{10}{gT^3} \left(\frac{\alpha^2}{T^2} \right)^{-1} = \frac{10}{g\alpha^2 T}$

For T = 100 GeV, $H^{-1} \simeq 10^{14} \text{GeV}^{-1}$,

$$\begin{split} \lambda_s \simeq \frac{1}{\alpha_s^2 T} &\sim 1 \, \text{GeV}^{-1} & \text{for strong interactions} \\ \lambda_{EW} \simeq \frac{1}{\alpha_W^2 T} &\sim 10 \, \text{GeV}^{-1} & \text{for EW interactions} \\ \lambda_Y \simeq \left(\frac{m_W}{m_f}\right)^4 \lambda_{EW} & \text{for Yukawa interactions} \end{split}$$

time scale of sphaleron process

$$\bar{t}_{\rm sph} = (\Gamma_{\rm sph}/n)^{-1} \simeq \begin{cases} 10^6 T^{-1} \,{\rm GeV}^{-1} & (T > T_C) \\ \\ 10^5 T^{-1} e^{E_{\rm sph}/T} \,{\rm GeV}^{-1} & (T < T_C) \end{cases}$$

[cf. $E_{\rm sph} \simeq 10 \text{TeV}$ for $v_0 = 246 \text{GeV}$]

If $v(T_C) \ll 200 \text{GeV}$ (eg. 2nd order EWPT), $\exists T_{\text{dec}}, s.t.$

$$T_{\rm dec} < T < T_C \implies \Gamma_{\rm sph}^{(b)}(T) > H(T)$$

wash-out of B + L even in the broken phase

To have nonzero BAU,

(i) we must have B - L before the sphaleron process decouples, or

(ii) B + L must be created at the first-order EWPT, and the sphaleron process must decouple immediately after that.

N.B.

 $\Delta(B+L) \neq 0$ process is in equilibrium, for $T_C \simeq 100 \text{GeV} < T < 10^{12} \text{GeV}$

If $\Delta L \neq 0$ process is in equilibrium in this range of $T \Rightarrow B = L = 0!$

To leave $B \neq 0$, $\Gamma_{\Delta L \neq 0} < H(T)$ for $T \in [T_C, 10^{12} \text{GeV}]$.

 \implies constraints on models with $\Delta L \neq 0$ processes.

e.g., lower bound on m_N in the seesaw model \rightarrow upper bound on $m_{\nu} < 0.8 {\rm GeV}$

$$T \simeq 100 \text{GeV} \Rightarrow \quad H^{-1}(T) \simeq 10^{14} \text{GeV}^{-1} \ll \bar{t}_{EW} \simeq \frac{1}{\alpha_W T^2} \sim 10 \text{GeV}^{-1}$$

... All the particles of the SM are in *kinetic* equilibrium.

nonequilibrium state \Leftarrow **1st order EW phase transition**

study of the EWPT

★ static properties ← effective potential = free energy density

$$V_{\text{eff}}(\boldsymbol{v};T) = -\frac{1}{V}T\log Z = -\frac{1}{V}\log \operatorname{Tr}\left[e^{-H/T}\right]_{\langle \boldsymbol{\phi} \rangle = \boldsymbol{v}}$$

 \star dynamics — formation and motion of the bubble wall when 1st order PT

∴ 1st order EWPT

$$v_C \equiv \lim_{T \uparrow T_C} \varphi(T) \neq 0$$

first-order phase transition

bubble wall \leftarrow classical config. of the gauge-Higgs system

$$\dot{n}_B \simeq -\frac{\mu_B \Gamma_{\rm sph}^{\rm (sym)}}{T}$$

condition for the generated B (in fact B + L) not to be washed out:

$$\Gamma_{
m sph}^{
m (br)} < H(T_C) \iff rac{v_C}{T_C} > 1$$

3. Higgs mass and EWPT

Minimal SM — perturbation at the 1-loop level

$$V_{\text{eff}}(\varphi;T) = -\frac{1}{2}\mu^2\varphi^2 + \frac{\lambda}{4}\varphi^4 + 2Bv_0^2\varphi^2 + B\varphi^4 \left[\log\left(\frac{\varphi^2}{v_0^2}\right) - \frac{3}{2}\right] + \bar{V}(\varphi;T)$$

where

$$B = \frac{3}{64\pi^2 v_0^4} (2m_W^4 + m_Z^4 - 4m_t^4),$$

$$\bar{V}(\varphi;T) = \frac{T^4}{2\pi^2} \left[6I_B(a_W) + 3I_B(a_Z) - 6I_F(a_t) \right], \qquad (a_A = m_A(\varphi)/T)$$
$$I_{B,F}(a^2) \equiv \int_0^\infty dx \, x^2 \log\left(1 \mp e^{-\sqrt{x^2 + a^2}}\right).$$

high-temperature expansion $[m/T \ll 1]$

$$I_B(a^2) = -\frac{\pi^4}{45} + \frac{\pi^2}{12} a^2 - \frac{\pi}{6} (a^2)^{3/2} - \frac{a^4}{16} \log \frac{\sqrt{a^2}}{4\pi} - \frac{a^4}{16} \left(\gamma_E - \frac{3}{4}\right) \frac{a^4}{2} + O(a^6)$$
$$I_F(a^2) = \frac{7\pi^4}{360} - \frac{\pi^2}{24} a^2 - \frac{a^4}{16} \log \frac{\sqrt{a^2}}{\pi} - \frac{a^4}{16} \left(\gamma_E - \frac{3}{4}\right) + O(a^6)$$

For $T > m_W, m_Z, m_t$,

$$V_{\rm eff}(\varphi;T) \simeq D(T^2 - T_0^2)\varphi^2 - ET\varphi^3 + \frac{\lambda_T}{4}\varphi^4$$

where

$$\begin{split} D &= \frac{1}{8v_0^2} (2m_W^2 + m_Z^2 + 2m_t^2), \qquad E = \frac{1}{4\pi v_0^3} (2m_W^3 + m_Z^3) \sim 10^{-2} \\ \lambda_T &= \lambda - \frac{3}{16\pi^2 v_0^4} \left(2m_W^4 \log \frac{m_W^2}{\alpha_B T^2} + m_Z^4 \log \frac{m_Z^2}{\alpha_B T^2} - 4m_t^4 \log \frac{m_t^2}{\alpha_F T^2} \right) \\ T_0^2 &= \frac{1}{2D} (\mu^2 - 4Bv_0^2), \qquad \log \alpha_{F(B)} = 2\log(4)\pi - 2\gamma_E \end{split}$$

At T_C , ^{\exists}degenerate minima: $\varphi_C = \frac{2E T_C}{\lambda_{T_C}}$ $\Gamma_{\rm sph}^{(\rm br)} < H(T_C) \iff \frac{\varphi_C}{T_C} \gtrsim 1 \implies$ upper bound on $\lambda \qquad [m_H = \sqrt{2\lambda}v_0]$ $m_H \lesssim 46 \text{GeV} \implies \text{MSM is excluded}$

★ Monte Carlo simulations

effective fermion mass : $m_f(T) \sim O(T) \leftarrow \text{nonzero modes}$

... simulation only with the bosons

QFT on the lattice $\begin{cases}
\text{scalar fields:} & \phi(x) \text{ on the sites} \\
\text{gauge fields:} & U_{\mu}(x) \text{ on the links}
\end{cases}$

$$Z=\int \left[d\phi\, dU_\mu
ight] \exp\left\{ -S_E[\phi,U_\mu]
ight\}$$

- 3-dim. SU(2) system with a Higgs doublet and a triplet time-component of U_{μ} [Laine & Rummukainen, hep-lat/9809045]
- 4-dim. SU(2) system with a Higgs doublet [Csikor, hep-lat/9910354] EWPT is first order for $m_h < 66.5 \pm 1.4 \text{GeV}$

Both the simulations found end-point of EWPT at

$$m_h = \begin{cases} 72.3 \pm 0.7 \text{ GeV} \\ 72.1 \pm 1.4 \text{ GeV} \end{cases} \Rightarrow \text{ no PT (cross-over) in the MSM !} \end{cases}$$

Summary of Part 1

• sphaleron decoupling condition :

$$\frac{v_C}{T_C} > 1$$

 \implies upper bound on the Higgs mass

- In the Minimal SM, this bound implies that $m_h < 66.5 \text{GeV}$
- CP violation by the KM phase is insufficient for EW baryogenesis

 \implies extensions of the SM which admit

- ★ strongly first-order EWPT
- \star sufficient CP violation

4. EWPT in the MSSM

superpotential: $W = y_b Q_L B_R^c H_d - y_t Q_L T_R^c H_u - \mu H_d H_u$ 2 Higgs doublets: $H_d \ni \Phi_d = \begin{pmatrix} \phi_d^0 \\ \phi_d^- \end{pmatrix}, \quad H_u \ni \Phi_u = \begin{pmatrix} \phi_u^+ \\ \phi_d^0 \end{pmatrix}$

Higgs potential

$$V_{0} = m_{1}^{2} \Phi_{d}^{\dagger} \Phi_{d} + m_{2}^{2} \Phi_{u}^{\dagger} \Phi_{u} - \left(m_{3}^{2} \epsilon_{ij} \Phi_{d}^{i} \Phi_{u}^{j} + \text{h.c.}\right) + \frac{g_{2}^{2} + g_{1}^{2}}{8} \left(\Phi_{d}^{\dagger} \Phi_{d} - \Phi_{u}^{\dagger} \Phi_{u}\right)^{2} + \frac{g_{2}^{2}}{2} \left|\Phi_{d}^{\dagger} \Phi_{u}\right|^{2}$$

all the parameters are real: no CP violation $m_{1,2}^2 = m_{\text{soft}}^2 + |\mu|^2 \leftrightarrow v_0 \text{ and } \tan \beta$

The Higgs mass is not completely a free parameter.

After EWSB $\longrightarrow \phi_d^0 = \frac{1}{\sqrt{2}}(v_d + h_d + ia_d), \quad \phi_u^0 = \frac{1}{\sqrt{2}}e^{i\theta}(v_u + h_u + ia_u)$ vacuum: $v_0 = \sqrt{v_d^2 + v_u^2} = 246$ GeV, $\tan \beta = v_u/v_d$ 1 Nambu-Goldstone mode in (a_d, a_u) and 1 in (ϕ_d^+, ϕ_u^-) \implies physical modes: 3 neutral (h, H, A), 1 charged (H^{\pm})

tree-level masses

$$m_{h,H}^{2} = \frac{1}{2} \left[m_{Z}^{2} + m_{A}^{2} \mp \sqrt{(m_{Z}^{2} + m_{A}^{2})^{2} - 4m_{Z}^{2}m_{Z}^{2}\cos^{2}(2\beta)} \right],$$

$$m_{A}^{2} = \frac{\operatorname{Re}(m_{3}^{2}e^{i\theta})}{\sin\beta\cos\beta}, \qquad m_{H^{\pm}}^{2} = m_{A}^{2} + m_{W}^{2}$$

$$\longrightarrow m_{h} \le \min\left\{m_{Z}, m_{A}\right\}, \qquad m_{H} \ge \max\left\{m_{Z}, m_{A}\right\}$$

These bounds recieve radiative collections from loops of the top quarks and squarks $\longrightarrow m_h \lesssim 135 \text{GeV}$ [Okada, et al. PTP85 ('91) 1] One-loop Effective potential (T = 0)

$$V_{\text{eff}} = V_0 + \frac{N_C}{32\pi^2} \sum_{q=t,b} \left[\sum_{j=1,2} \left(\bar{m}_{\tilde{q}_j}^2 \right)^2 \left(\log \frac{\bar{m}_{\tilde{q}_j}^2}{M^2} - \frac{3}{2} \right) - 2 \left(\bar{m}_q^2 \right)^2 \left(\log \frac{\bar{m}_q^2}{M^2} - \frac{3}{2} \right) \right]$$

 $\bar{m}^2(v_d, v_u, \theta)$: field-dependent mass

 $mass^2$ at the one-loop level

$$\mathcal{M}^{2} = \begin{pmatrix} \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial h_{d}^{2}} \right\rangle & \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial h_{d} \partial h_{u}} \right\rangle & \frac{1}{\cos \beta} \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial h_{d} \partial a_{u}} \right\rangle \\ \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial h_{d} \partial h_{u}} \right\rangle & \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial h_{u}^{2}} \right\rangle & \frac{1}{\sin \beta} \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial h_{u} \partial a_{d}} \right\rangle \\ \frac{1}{\cos \beta} \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial h_{d} \partial a_{u}} \right\rangle & \frac{1}{\sin \beta} \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial h_{u} \partial a_{d}} \right\rangle & \frac{1}{\sin \beta \cos \beta} \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial a_{d} \partial a_{u}} \right\rangle \end{pmatrix} \\ m_{H^{\pm}}^{2} = \frac{1}{\sin \beta \cos \beta} \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial \phi_{d}^{+} \partial \phi_{u}^{-}} \right\rangle & \left\langle \cdots \right\rangle = \text{values at the vacuum}$$

CP-conserving $\Rightarrow \mathcal{M}_{33}^2 = m_A^2$

CP violation in the squark sector $\propto \text{Im}\left(\mu A_q e^{i\theta}\right) \Rightarrow \mathcal{M}_{13}, \mathcal{M}_{23} \neq 0$

mass eigenstates: (H_1, H_2, H_3)

$$\begin{pmatrix} h_d \\ h_u \\ a \end{pmatrix} = \mathcal{O} \begin{pmatrix} H_1 \\ H_2 \\ H_3 \end{pmatrix}, \qquad \mathcal{O}^T \mathcal{M}^2 \mathcal{O} = \operatorname{diag}(m_{H_1}^2, m_{H_2}^2, m_{H_3}^2)$$

gauge and Yukawa interactions

$$\mathcal{L}_{\text{gauge}} \sim g_2 m_W g_{VVH_i} \left(W^+_{\mu} W^{-\mu} + \frac{Z_{\mu} Z^{\mu}}{2 \cos^2 \theta_W} \right) H_i + \frac{g_2}{2 \cos \theta_W} g_{ZH_i H_j} Z^{\mu} \left(H_i \overleftrightarrow{\partial}_{\mu} H_j \right)$$
$$\mathcal{L}_Y \sim -\frac{g_2 m_b}{2 m_W} \bar{b} (g^S_{bbh_i} + i \gamma_5 g^P_{bbh_i}) b H_i$$

corrections to the couplings

[MSM: $g_{VVH} = 1$, $g_{ZHH} = 0$, $g_{bbH} = 1$]

$$g_{VVH_i} = O_{1i} \cos\beta + O_{2i} \sin\beta$$

$$g_{ZH_iH_j} = \frac{1}{2} [(O_{3i}O_{1j} - O_{3j}O_{1i}) \sin\beta + (O_{3i}O_{2j} - O_{3j}O_{2i}) \cos\beta]$$

$$g_{bbH_i}^S = O_{1i} \frac{1}{\cos\beta}, \quad g_{bbH_i}^P = -O_{3i} \tan\beta, \qquad g_{bbH_i}^2 = (g_{bbH_i}^S)^2 + (g_{bbH_i}^P)^2$$

***** Electroweak phase transition

$$V_{\text{eff}}(\boldsymbol{v};T) = V_{\text{eff}}(\boldsymbol{v};T) + 6 \sum_{q=t,b} \sum_{j=1,2} \frac{T^4}{2\pi^2} I_B\left(\frac{\bar{m}_{\tilde{\boldsymbol{q}}_j}}{T}\right) + \cdots,$$

where $m^2_{\tilde{t}_j}$ is the eigenvalues of

$$\mathcal{M}_{\tilde{t}}^2 = \begin{pmatrix} m_{\tilde{t}_L}^2 + \left(\frac{g_1^2}{24} - \frac{g_2^2}{8}\right) (v_u^2 - v_d^2) + \frac{y_t^2}{2} v_u^2 & \frac{y_t}{\sqrt{2}} \left(\mu v_d + A(v_2 - iv_3)\right) \\ * & m_{\tilde{t}_R}^2 - \frac{g_1^2}{6} (v_u^2 - v_d^2) + \frac{y_t^2}{2} v_u^2 \end{pmatrix}$$

light stop scenario

[de Carlos & Espinosa, NPB '97]

$$m^2_{\tilde{t}_L} = 0$$
 or $m^2_{\tilde{t}_R} = 0 \Longrightarrow$ smaller eigenvalue: $m^2_{\tilde{t}_1} \sim O(v^2)$

 $\therefore \text{ high-}T \text{ expansion: } \Delta_{\tilde{t}} V_{\text{eff}}(\boldsymbol{v};T) \Rightarrow -\frac{T}{6\pi} (m_{\tilde{t}_1}^2)^{3/2} \sim -T \boldsymbol{v}^3 \quad \rightarrow 1 \text{st order PT}$

more effective for larger y_t — smaller $\tan \beta$

An example: $\tan \beta = 6$, $m_h = 82.3 \text{GeV}$, $m_A = 118 \text{GeV}$, $m_{\tilde{t}_1} = 168 \text{GeV}$ $T_C = 93.4 \text{GeV}$, $v_C = 129 \text{GeV}$ [KF, PTP101('99)]

 $V_{\text{eff}}(v_1, v_2, v_3 = 0; T_C)$

 $m_{\tilde{t}_B}$ -dependence $(\tan\beta=6)$

[Laine et al. hep-lat/9809045]

[Csikor, et al. hep-lat/0001087]

★ Lattice MC studies

- 3d reduced model strong 1st order for $m_{\tilde{t}_1} \lesssim m_t$ and $m_h \leq 110 {\rm GeV}$
- 4d model

with SU(3), SU(2) gauge bosons, 2 Higgs doublets, stops, sbottoms

 $A_{t,b} = 0$, $\tan \beta \simeq 6 \longrightarrow$ agreement with the perturbation theory within the errors

negative soft mass²:
$$m_{t_R}^2 > -(65 {\rm GeV})^2$$

[Laine & Rummukainen, NPB597]

\star Effects of CP violation on the EWPT

EWPT in the light-stop scenario $[m_{\tilde{t}_R} = 10 \text{GeV}]$

$$\operatorname{Im}(\mu A_t e^{i\theta}) \neq 0 \Rightarrow \begin{cases} \triangleright \text{ scalar-pseudoscalar mixing} \\ \triangleright \text{ induces } \delta = \operatorname{Arg}(m_3^2) \\ \bullet \text{ weakens the EWPT} \end{cases}$$

[Carena, et al., NPB586]

field-dependent mass² of the lighter stop:

$$\bar{m}_{\tilde{t}_{1}}^{2} = \frac{1}{2} \left[m_{\tilde{q}}^{2} + m_{\tilde{t}_{R}}^{2} + y_{t}^{2} v_{u}^{2} + \frac{g_{2}^{2} + g_{1}^{2}}{4} (v_{d}^{2} - v_{u}^{2}) - \sqrt{\left(m_{\tilde{q}}^{2} - m_{\tilde{t}_{R}}^{2} + \frac{x_{t}}{2} (v_{d}^{2} - v_{u}^{2})\right)^{2} + y_{t}^{2} \left|\mu v_{d} - A_{t}^{*} e^{-i\theta} v_{u}\right|^{2}} \right]$$

[KF, Tao & Toyoda, PTP 109('03)]

$\tan \beta = 10, \ \mu = 1500 \text{GeV}, \ |A| = 150 \text{GeV}$

For parameter sets with $m_{H_1} \ge 105 \text{GeV}$, introduce $\delta_A = \text{Arg}A$

36

* Large CP violation and light Higgs

The EWPT in the light-Higgs allowed region has not been investigated.

5. EWPT in the NMSSM

$$W = \epsilon_{ij} \left(y_b H_d^i Q^j B - y_t H_u^i Q^j T + y_l H_d^i L^j E - \lambda N H_d^i H_u^j \right) - \frac{\kappa}{3} N^3$$

 $\lambda \left< N \right> \sim \mu$ in the MSSM

$$\mathcal{L}_{\text{soft}} \ni -m_N^2 n^* n + \left[\lambda A_\lambda n H_d H_u + \frac{\kappa}{3} A_\kappa n^3 + \text{h.c.} \right].$$

order parameters: $\langle \Phi_d \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v_{0d} \\ 0 \end{pmatrix}, \quad \langle \Phi_u \rangle = \frac{e^{i\theta_0}}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{0u} \end{pmatrix}, \quad \langle n \rangle = \frac{e^{i\varphi_0}}{\sqrt{2}} v_{0n}$

tree-level Higgs potential:

$$V_{0} = m_{1}^{2}\Phi_{d}^{\dagger}\Phi_{d} + m_{2}^{2}\Phi_{u}^{\dagger}\Phi_{u} + m_{N}^{2}n^{*}n - \left(\lambda A_{\lambda}\epsilon_{ij}n\Phi_{d}^{i}\Phi_{u}^{j} + \frac{\kappa}{3}A_{\kappa}n^{3} + \text{h.c.}\right)$$
$$+ \frac{g_{2}^{2} + g_{1}^{2}}{8} \left(\Phi_{d}^{\dagger}\Phi_{d} - \Phi_{u}^{\dagger}\Phi_{u}\right)^{2} + \frac{g_{2}^{2}}{2} \left|\Phi_{d}^{\dagger}\Phi_{u}\right|^{2}$$
$$+ \left|\lambda\right|^{2}n^{*}n \left(\Phi_{d}^{\dagger}\Phi_{d} + \Phi_{u}^{\dagger}\Phi_{u}\right) + \left|\lambda\epsilon_{ij}\Phi_{d}^{i}\Phi_{u}^{j} + \kappa n^{2}\right|^{2}$$

1. 5 neutral and 1 charged scalars (3 scalar and 2 pseudoscalar when CP cons.)

The lightest Higgs scalar can escape from the lower bound 114GeV, because of small coupling to Z, W caused by large mixing among 3 scalars. [Miller, et al. NPB 681] — "Light Higgs Scenario" —

2. CP violation at the tree level: Im $(\lambda A_{\lambda} e^{i(\theta+\varphi)})$, Im $(\kappa A_{\kappa} e^{3i\varphi})$, Im $(\lambda \kappa^* e^{i(\theta-2\varphi)})$

3. $v_n \to \infty$ with λv_n and κv_n fixed \Longrightarrow MSSM [Ellis, et al, PRD 39] \longrightarrow new features expected for $v_n = O(100)$ GeV

study of the Higgs spectrum and couplings without/with CP violation
 [KF and Tao, hep-ph/0409294]

* study of the EWPT without/with CP violation [KF, Toyoda and Tao, hep-ph/0501052]

 \star sphaleron solution

[KF, et al. in preparation]

mass matrix of the neutral Higgs bosons

$$\mathcal{M}^{2} \equiv \begin{pmatrix} \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial h_{i} \partial h_{j}} \right\rangle & \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial h_{i} \partial a_{j}} \right\rangle \\ \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial a_{i} \partial h_{j}} \right\rangle & \left\langle \frac{\partial^{2} V_{\text{eff}}}{\partial a_{i} \partial a_{j}} \right\rangle \end{pmatrix} \text{ extract NG modes} \begin{pmatrix} \mathcal{M}_{S}^{2} & \mathcal{M}_{SP}^{2} \\ \left(\mathcal{M}_{SP}^{2} \right)^{T} & \mathcal{M}_{P}^{2} \end{pmatrix}$$

 $\mathcal{M}_S^2: 3 \times 3, \qquad \mathcal{M}_P^2: 2 \times 2. \qquad \mathcal{M}_{SP}^2: 3 \times 2$

where the basis is (h_d, h_u, h_n, a, a_n) ,

$$\mathcal{M}_{SP}^2 \propto \begin{cases} \operatorname{Im} \left(\lambda \kappa^* e^{i(\theta_0 - 2\varphi_0)} \right) & \text{at the tree level} \\ \operatorname{Im} \left(\lambda v_n A_{t,b} e^{i(\theta_0 + \varphi_0)} \right) & \text{at the one-loop level} \end{cases}$$

charged Higgs mass

$$m_{H^{\pm}}^{2} = \frac{1}{\sin\beta_{0}\cos\beta_{0}} \left\langle \frac{\partial^{2}V_{\text{eff}}}{\partial\phi_{d}^{+}\partial\phi_{u}^{-}} \right\rangle = \left(m_{H^{\pm}}^{2}\right)_{\mu=\lambda v_{n}e^{i\varphi_{0}}/\sqrt{2}}^{\text{MSSM}}$$

At the tree-level,

$$\mathcal{M}_{S}^{2} = \begin{pmatrix} \left(R_{\lambda} - \frac{\mathcal{R}v_{n}}{2}\right)v_{n}\tan\beta + m_{Z}^{2}\cos^{2}\beta & -\left(R_{\lambda} - \frac{\mathcal{R}v_{n}}{2}\right)v_{n} - m_{Z}^{2}\sin\beta\cos\beta + |\lambda|^{2}v_{d}v_{u} & -R_{\lambda}v_{u} + \mathcal{R}v_{u}v_{n} + |\lambda|^{2}v_{d}v_{n} \\ & \ddots & \left(R_{\lambda} - \frac{\mathcal{R}v_{n}}{2}\right)v_{n}\cot\beta + m_{Z}^{2}\sin^{2}\beta & -R_{\lambda}v_{d} + \mathcal{R}v_{d}v_{n} + |\lambda|^{2}v_{u}v_{n} \\ & \ddots & & R_{\lambda}\frac{v_{d}v_{u}}{v_{n}} + 3R_{\kappa}v_{n} + 2\left|\kappa\right|^{2}v_{n}^{2} \end{pmatrix},$$

$$\mathcal{M}_{P}^{2} = \begin{pmatrix} \left(R_{\lambda} - \frac{1}{2} \mathcal{R} v_{n} \right) \frac{v_{n}}{\sin \beta \cos \beta} & (R_{\lambda} + \mathcal{R} v_{n}) v_{0} \\ (R_{\lambda} + \mathcal{R} v_{n}) v_{0} & R_{\lambda} \frac{v_{0}^{2} \sin \beta \cos \beta}{v_{n}} + 3R_{\kappa} v_{n} - 2\mathcal{R} v_{d} v_{u} \end{pmatrix},$$

$$\mathcal{M}_{SP}^2 = \begin{pmatrix} 0 & \frac{3}{2}\sin\beta \\ 0 & \frac{3}{2}\cos\beta \\ -\frac{1}{2} & -2\sin\beta\cos\beta \end{pmatrix} \mathcal{I}v_0 v_n.$$

where we have defined

$$R_{\lambda} = \frac{1}{\sqrt{2}} \operatorname{Re} \left(\lambda A_{\lambda} e^{i(\theta_{0} + \varphi_{0})} \right), \qquad I_{\lambda} = \frac{1}{\sqrt{2}} \operatorname{Im} \left(\lambda A_{\lambda} e^{i(\theta_{0} + \varphi_{0})} \right),$$
$$R_{\kappa} = \frac{1}{\sqrt{2}} \operatorname{Re} \left(\kappa A_{\kappa} e^{3i\varphi_{0}} \right), \qquad I_{\kappa} = \frac{1}{\sqrt{2}} \operatorname{Im} \left(\kappa A_{\kappa} e^{3i\varphi_{0}} \right),$$
$$\mathcal{R} = \operatorname{Re} \left(\lambda \kappa^{*} e^{i(\theta_{0} - 2\varphi_{0})} \right), \qquad \mathcal{I} = \operatorname{Re} \left(\lambda \kappa^{*} e^{i(\theta_{0} - 2\varphi_{0})} \right)$$

— independent of phase convention

We have used the tadpole conditions: $\left\langle \frac{\partial V_{\text{eff}}}{\partial h_i} \right\rangle = \left\langle \frac{\partial V_{\text{eff}}}{\partial a_i} \right\rangle = 0$

$$m_{1}^{2} = \left(R_{\lambda} - \frac{1}{2}\mathcal{R}v_{0n}\right)v_{0n}\tan\beta_{0} - \frac{1}{2}m_{Z}^{2}\cos(2\beta_{0}) - \frac{|\lambda|^{2}}{2}(v_{0n}^{2} + v_{0u}^{2}) + \cdots$$

$$m_{2}^{2} = \left(R_{\lambda} - \frac{1}{2}\mathcal{R}v_{0n}\right)v_{0n}\cot\beta_{0} + \frac{1}{2}m_{Z}^{2}\cos(2\beta_{0}) - \frac{|\lambda|^{2}}{2}(v_{0n}^{2} + v_{0d}^{2}) + \cdots$$

$$m_{N}^{2} = \left(R_{\lambda} - \mathcal{R}v_{0n}\right)\frac{v_{0d}v_{0u}}{v_{0n}} + R_{\kappa}v_{0n} - \frac{|\lambda|^{2}}{2}(v_{0d}^{2} + v_{0u}^{2}) - |\kappa|^{2}v_{0n}^{2} + \cdots$$

$$I_{\lambda} = \frac{1}{2}\mathcal{I}v_{0n} + \cdots, \qquad I_{\kappa} = -\frac{3}{2}\mathcal{I}\frac{v_{0d}v_{0u}}{v_{0n}}$$

We shall use $m_{H^{\pm}}$ instead of R_{λ} :

$$m_{H^{\pm}}^{2} = m_{W}^{2} - \frac{1}{2} |\lambda|^{2} v^{2} + (2R_{\lambda} - \mathcal{R}v_{0n}) \frac{v_{0n}}{\sin 2\beta_{0}} + \cdots$$

Definition of the couplings

gauge vs mass eigenstates

states:
$$\begin{pmatrix} h_d \\ h_u \\ h_n \\ a \\ a_n \end{pmatrix} = \mathcal{O} \begin{pmatrix} H_1 \\ H_2 \\ H_3 \\ H_4 \\ H_5 \end{pmatrix}, \qquad \mathcal{O}^T \mathcal{M}^2 \mathcal{O} = \operatorname{diag}(m_{H_1}^2, \cdots, m_{H_5}^2)$$

$$\mathcal{L}_{\text{gauge}} \ni g_2 m_W g_{VVH_i} \left(W^+_{\mu} W^{-\mu} + \frac{1}{2\cos^2 \theta_W} Z_{\mu} Z^{\mu} \right) H_i + \frac{g_2}{2\cos \theta_W} g_{ZH_iH_j} Z^{\mu} (H_i \overleftrightarrow{\partial}_{\mu} H_j)$$
$$\mathcal{L}_{\text{Yukawa}} \ni -\frac{g_2 m_b}{2m_W} \bar{b} (g^S_{bbH_i} + i\gamma^5 g^P_{bbH_i}) b H_i$$

$$\begin{cases} g_{VVH_i} = \mathcal{O}_{1i}\cos\beta + \mathcal{O}_{2i}\sin\beta \\ g_{ZH_iH_j} = \frac{1}{2} \left\{ (\mathcal{O}_{4i}\mathcal{O}_{2j} - \mathcal{O}_{4j}\mathcal{O}_{2i})\cos\beta - (\mathcal{O}_{4i}\mathcal{O}_{1j} - \mathcal{O}_{4j}\mathcal{O}_{1i})\sin\beta \right\} \\ g_{bbH_i}^S = \mathcal{O}_{1i}\frac{1}{\cos\beta}, \qquad g_{bbH_i}^P = -\mathcal{O}_{4i}\tan\beta \\ g_{bbH_i}^2 \equiv \left(g_{bbH_i}^S\right)^2 + \left(g_{bbH_i}^P\right)^2 \end{cases}$$

\star MSSM vs NMSSM

tree-level mass relation (CP-conserving)

$m_h \le \min\{m_A, m_Z\}$	$m_{A_1} < \hat{m} < m_{A_2}$
$m_H \ge \max\{m_A, m_Z\}$	For $\hat{m} \gg v_0, v_n$, $m_{S_1} < m_{S_2} < \hat{m} < m_{S_3}$
$m_{H^{\pm}}^2 = m_A^2 + m_W^2$	$\hat{m}^2 = m_{H^{\pm}}^2 - m_W^2 + \lambda ^2 v_0^2/2$

tree-level vacuum

The tadpole condition $\left\langle \frac{\partial V_0}{\partial \varphi_i} \right\rangle = 0$ is sufficient for the EW vacumm (v_{0d}, v_{0u}) to be the global minimum	Even if the tadpole conditions are satisfied, the prescribe vacuum (v_{0d}, v_{0u}, v_{0n}) is <i>not</i> always the global minimum.
of the potential.	

Although the NMSSM has more parameters than the MSSM, it must satisfy more constraints than the MSSM.

 $\lambda, \kappa, A_{\lambda}, A_{\kappa}, m_N^2$

★ Constraints on the parameters

1. vacuum condition

The vacuum $(v_0, v_{0n}, \tan \beta_0, \theta_0, \varphi_0)$ be the global minimum of V_{eff} .

2. spectrum condition

The neutral Higgs boson with $|g_{VVH}| > 0.1$ be heavier than 114GeV.

 $\begin{array}{l} \mbox{We scanned the parameter space for (CP-conserving case)} \\ \mbox{tan } \beta_0 = 2 - 10, \ v_{0n} = 100 - 1000 \mbox{GeV}, \ m_{H^\pm} = 100 - 5000 \mbox{GeV}, \\ -1000 \mbox{GeV} \leq A_\kappa \leq 0, \ 0 \leq \lambda \leq 1, \ -1 \leq \kappa \leq 1 \\ (m_{\tilde{q}}, m_{\tilde{t}_R} = m_{\tilde{b}_R}) = \begin{cases} (1000 \mbox{GeV}, 800 \mbox{GeV}) & \mbox{heavy-squark} \\ (1000 \mbox{GeV}, 800 \mbox{GeV}) & \mbox{heavy-squark} \\ (1000 \mbox{GeV}, 10 \mbox{GeV}) & \mbox{light-squark-1} \\ (500 \mbox{GeV}, 10 \mbox{GeV}) & \mbox{light-squark-2} \\ A_t = A_b = 20 \mbox{GeV} \\ \end{array}$

e.g., $\tan \beta_0 = 3$, $v_{0n} = 200 \text{GeV}$, $m_{H^{\pm}} = 400 \text{GeV}$, $A_{\kappa} = -200 \text{GeV}$, heavy squark

λ	κ	m_{H_1}	m_{H_2}	m_{H_3}	m_{H_4}	m_{H_5}	$g_{VVH_1}^2$	$g^2_{VVH_2}$	$g^2_{VVH_3}$	$g^2_{VVH_4}$	$g^2_{VVH_5}$
0.9	-0.05	75.0	83.5	145.7	436.0	448.2	0.0094	0	0.9897	0.0009	0
0.95	-0.95	139.6	180.9	360.3	425.4	456.4	0.828	0.170	0	0	0.0028

along the line of $\lambda=0.9$

.....

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

 κ

 $g^2_{bbH_2}$

0.5-

0

Effects of CP violation

★ Phase transitions in the NMSSM

There has been a belief that the EWPT in the NMSSM is strongly first-order because of the cubic terms in the Higgs potential.

naive (?) argument [Pietroni, NPB402('93)27]
order parameters :
$$\begin{cases} v_d = v \cos \beta(T) = y \cos \alpha(T) \cos \beta(T), \\ v_u = v \sin \beta(T) = y \cos \alpha(T) \sin \beta(T), \\ v_n = y \sin \alpha(T) \end{cases}$$

$$V_0 = \frac{1}{2} \left((m_1^2 \cos^2 \beta + m_2^2 \sin^2 \beta) \cos^2 \alpha + m_N^2 \sin^2 \alpha \right) y^2 - \left(R_\lambda \cos^2 \alpha \sin \alpha \cos \beta \sin \beta + \frac{1}{3} R_\kappa \sin^3 \alpha \right) y^3 + \cdots$$

strongly 1st order PT by the tree-level cubic term ?

Is such a parametrization valid ?

No!

i no symmetry between the doublets and the singlet

order of phase transitions (*universality class*) Indeed, we have found various phases and transitions among them.

possible phases and transitions

phase	order parameters	symmetries
EW	$v eq 0$, $v_n eq 0$	fully broken
I, I′	$v=0$, $v_n eq 0$	local $SU(2)_L imes U(1)_Y$
Ш	$v eq 0$, $v_n=0$	global $U(1)$
SYM	$v = v_n = 0$	$SU(2)_L imes U(1)_Y$, global $U(1)$

global U(1): $\Phi_u \mapsto e^{i\alpha} \Phi_u$, $n \mapsto e^{-i\alpha} n$ — exact for $\kappa = 0$ phase-I : heavy Higgs phase-I': light Higgs

4 types of phase transitions

A: SYM \rightarrow I \Rightarrow EWB: SYM \rightarrow I' \Rightarrow EWC: SYM \Rightarrow II \rightarrow EWD: SYM \Rightarrow EW

"⇒": EWPT

expamles of the phase transitions in the CP-conserving case

common parameters: $\tan\beta_0=5$, $v_{0n}=200{\rm GeV}$, $A_\kappa=-100{\rm GeV}$

Α	$m_{H^{\pm}} = 600 { m GeV}$	$(\lambda,\kappa) = (0.9, -0.9)$	light-squark-1
В	$m_{H^{\pm}} = 600 { m GeV}$	$(\lambda,\kappa) = (0.85, -0.1)$	heavy-squark
С	$m_{H^{\pm}} = 600 { m GeV}$	$(\lambda, \kappa) = (0.82, -0.05)$	light-squark-1
D	$m_{H^{\pm}}=700{ m GeV}$	$(\lambda,\kappa) = (0.96, -0.02)$	light-squark-2

Higgs spectrum and VVH-couplings

		H_1	H_2	H_3	H_4	H_5
	$m_{H_i}(\text{GeV})$	119.53	203.59	265.74	617.24	637.47
A	$g_{VVH_i}^2$	0.9992	5.926×10^{-4}	0	0	1.884×10^{-4}
D	$m_{H_i}(\text{GeV})$	38.89	75.31	131.11	625.61	627.95
D	$g_{VVH_i}^2$	6.213×10^{-8}	0	0.9999	6.816×10^{-5}	0
	$m_{H_i}(\text{GeV})$	42.24	63.49	117.25	625.09	627.44
C	$g_{VVH_i}^2$	0.00188	0	0.9980	9.541×10^{-5}	0
	$m_{H_i}(\text{GeV})$	41.88	58.62.08	115.15	730.51	734.58
U	$g_{VVH_i}^2$	0	1.015×10^{-4}	0.9997	1.632×10^{-4}	0

A: heavy Higgs (MSSM-like), B, C, D: light Higgs

reduced effective potential: $\tilde{V}_{\text{eff}}(v, v_n; T) = V_{\text{eff}}(v \cos \beta(T), v \sin \beta(T), 0, v_n, 0; T) - V_{\text{eff}}(0, 0, 0, 0; T)$

★ How the phase transitions proceed

type-A MSSM-like EWPT — proceeds along almost constant $v_n \neq 0$

a light stop is needed for it to be strongly first order

type-B new type of 2-stage PT

leap from $(v(T_{C-}), v_n(T_{C-}))$ to $(0, v_n(T_{C+}))$ strongly first order EWPT (no light stop is needed)

type-C new type of 2-stage PT

EWPT proceeds along $v_n = 0$

a light stop is needed for it to be strongly first order

type-D 1-stage PT (so far mainly considered in the NMSSM)

a light stop is needed for the EWPT to be strongly first order

type-B,C,D — light-Higgs scenario — peculiar to NMSSM

\star Phase transitions in the presence of CPV

explicit CP violation: δ_{κ} with $\delta_{\text{EDM}} = 0$ and $\theta_0 = \varphi_0 = 0$ $\tan \beta_0 = 5, v_{0n} = 200 \text{GeV}, A_{\kappa} = -100 \text{GeV}$ $m_{H^{\pm}} = 600 \text{GeV}, (\lambda, \kappa) = (0.83, -0.07)$, heavy-squark

Higgs mass and VVH-couplings

δ_{κ}		H_1	H_2	H_3	H_4	H_5
0	$m_{H_i}(\text{GeV})$	38.89	75.31	131.11	625.61	627.945
0	$g_{VVH_i}^2$	6.213×10^{-8}	0	0.9999	6.816×10^{-5}	0
0.1π	$m_{H_i}(\text{GeV})$	40.04	73.24	131.20	625.54	627.56
	$g_{VVH_i}^2$	2.749×10^{-6}	0.00169	0.9982	6.570×10^{-5}	2.363×10^{-6}
0.9-	$m_{H_i}(\text{GeV})$	43.21	66.95	131.38	625.40	627.85
0.2π	$g_{VVH_i}^2$	3.133×10^{-5}	0.00531	0.9946	6.132×10^{-5}	6.407×10^{-6}

In the phase-II of type-C PT, $\theta(T) = \operatorname{Arg}(v_2 + iv_3)$ is undertermined (global U(1))

For $\delta_{\kappa} = 0.2\pi$, $\varphi(T) = 0.05(\text{EW}) \rightarrow 0.215(\text{I}')$ (chiral charge enhanced)

6. Summary

Electroweak Baryogenesis

• based on a testable model \longleftrightarrow stringent constraints

• free from proton decay problem

other attemps:

- ★ GUTs
- ★ Leptogenesis
- ★ Affleck-Dine
- ★ Inflationary Baryogenesis [KF, Kakuto, Otsuki & Toyoda, PTP 105('01)] [Nanopoulos & Rangarajan, PRD 64('01)]
- ★ Gravitational Baryogeneisis

[Alexander, Peskin & Sheikh-Jabbari, hep-th/0405214]

EW Baryogenesis needs extensions of the SM for

★ CP violation

new sources of CP violation EDM, precise measurements of CP-viol. BR μ , A_q , gaugino masses, θ , \cdots in SUSY models

★ strongly 1st-order EWPT

extra scalars: 2HDM, MSSM, NMSSM, ···

 \implies Higgs spectrum and couplings LHC, LC, ...

- $m_H > 120 \text{GeV} \implies 1 \text{st-order EWPT}$ in the MSSM X
- $m_H > 135 \text{GeV} \Longrightarrow \text{MSSM X}$

NMSSM (light Higgs for 1st-order EWPT) 2HDM, etc.

NMSSM in the light Higgs scenario with heavy charged Higgs

 \simeq Minimal SM with 1st order EWPT (type-B), extra CP violation

How can we distinguish it from the MSM?

If no Higgs found

* origin of masses (origin of symmetry breaking)

Higgsless model, technicolor, · · ·

* origin of the matter

- EW B-gensis in the Higgs less or TC model?
- beyond the EW physics

Leptogenesis, Affleck-Dine, GUTs, ···

I hope that

```
the Higgs boson(s) will be found and
its couplings (g_{VVH}, g_{bbH}, etc.) will be precisely determined
within the next 5 years.
(and also the SUSY particles by that time.)
\downarrow
quantitative estimate of the BAU
```