宇宙のバリオン数生成

佐賀大学理工学部 船久保 公一

Flavor Physics Workshop 2009 2009年12月2日 下呂温泉 contents

バリオン数生成のシナリオ スファレロン過程 電弱バリオン数生成 レプトン数生成

★月、太陽系惑星は物質でできている

★私たちの銀河も物質でできている 天の川からの宇宙線

 反陽子
 -10-4
 2次粒子とconsistent

★銀河や銀河団は、物質または反物質だけでできている 太陽質量のI0^{I2}倍

> 粒子と反粒子がほぼ同数いた宇宙初期に、 粒子と反粒子を大量に分離するのは不可能。

バリオン数の起源

★宇宙の初期条件 人間原理? インフレーションでリセット

★バリオン数生成 n_B=0の状態から、元素合成までに生成された ↓ 素粒子論に基づいて定量的に説明する

いつ、バリオン数が生成されたか?

元素合成までにバリオン数があればよい。 インフレーションで殆ど0になる。 電弱スケール以下ではバリオン数生成は不可能。

バリオン数生成のための条件

[Sakharov, JETP Lett. 5 (1967) 24]

(1) バリオン数非保存過程
(2) *CとCP* 対称性の破れ
(3) 平衡からのズレ

(1)は自明
(1)があったとしても、
(3)が無いと、バリオンを作る過程と逆過程が平衡

条件(2)が成り立たないとすると
バリオン対称な宇宙にバリオン数は生じない
宇宙の状態を表す密度演算子 期待値
$$\rho(t) = \sum_{n} p_{n} |\psi_{n}(t)\rangle \langle\psi_{n}(t)|$$
 $\langle \mathcal{O} \rangle(t) = \operatorname{Tr} [\rho(t)\mathcal{O}]$
時間発展 Liouville方程式: $i\hbar \frac{\partial \rho(t)}{\partial t} + [\rho(t), H] = 0$
初期条件 ρ_{0} :バリオン対称宇宙 $\langle n_{B} \rangle_{0} = \operatorname{Tr} [\rho_{0} n_{B}] = 0$
解は形式的に ρ_{0} と H で書かれる。

*H*がCまたはCP 対称 [$\rho(t), C$] = 0 or [$\rho(t), CP$] = 0
 バリオン数はC及びCP でodd *CBC*⁻¹ = -B, CPBCP⁻¹ = -B

バリオン対称な宇宙 ho_0 からスタートして、 *H*が*C*または*CP*対称ならば

 $\langle n_B \rangle = \operatorname{Tr}[\rho \, n_B] = \operatorname{Tr}[\rho \, \mathcal{C} n_B \mathcal{C}^{-1}] = -\operatorname{Tr}[\rho \, n_B] = 0$ $\langle n_B \rangle = \operatorname{Tr}[\rho \, n_B] = \operatorname{Tr}[\rho \, \mathcal{C} \mathcal{P} n_B \mathcal{C} \mathcal{P}^{-1}] = -\operatorname{Tr}[\rho \, n_B] = 0$

 $\langle n_B \rangle \neq 0$ となるには、 $C \geq C P$ の両方が 破れなければならない。

バリオン数生成のシナリオ

素粒子模型の初めの具体例 [Yoshimura, Phys. Rev. Lett. 41(1978)] 大統一理論 (Grand Unified Theories) 標準理論 $SU(3)_c \times SU(2)_L \times U(1)_Y \subset G_{GUT}$ クォークとレプトンが同じ多重項 B, L 非保存

process	Branch. Ratio	ΔB
$X \longrightarrow qq$	r	2/3
$X \longrightarrow \bar{q}\bar{l}$	1-r	-1/3
$\bar{X} \longrightarrow \bar{q}\bar{q}$	\overline{r}	-2/3
$\bar{X} \longrightarrow ql$	$1-\overline{r}$	1/3

熱浴で生成された $X \overline{X}$ 対の崩壊

 $\langle \Delta B \rangle = \frac{2}{3}r - \frac{1}{3}(1-r) - \frac{2}{3}\bar{r} + \frac{1}{3}(1-\bar{r}) = r - \bar{r}$

CまたはCP保存 $\longrightarrow r = \bar{r}$ $\langle \Delta B \rangle = 0$

X粒子の対生成・対消滅は抑制され(非平衡)、X粒子の崩壊によりBが生成される。

バリオン数保存をあらわに破る理論 **陽子崩壊** $p \to e^+ \pi^0, \nu_e \pi^+, \cdots$ $\tau_p > 10^{31-33}$ y

シナリオ	$\Delta B eq 0 (\Delta L eq 0)$	CPの破れ	非平衡状態
GUTs	leptoquarkの崩壊	decay vertex	$\Gamma_D < H(T)$
Electroweak	(B+L) anomaly	Yukawa, gauge,	電弱一次相転移
Leptogenesis	heavy-vの崩壊	decay vertex	$\Gamma_D < H(T)$
Affleck-Dine ⁽¹⁾	$\left< \widetilde{q} \right>, \ \left< \widetilde{l} \right> eq 0$	scalar potential	scalar場の運動
string, DW ⁽²⁾	anomaly	Yukawa, gauge	defectの運動
inflationary ⁽³⁾	$ ot\!\!B, ot\!$	scalar potential	(p)reheating

(1) Affleck and Dine, Nucl. Phys. B249 ('85) Dine, Randall and Thomas, Nucl. Phys. B458 ('96)
(2) Brandenberger and Davis, Phys. Lett. B308 ('93) Brandenberger, Davis and Trodden, Phys. Lett. B349 ('94)
(3) KF, Kakuto, Otsuki and Toyoda, Prog. Theor. Phys. 105 ('01) Rangarajan and Nanopoulos, Phys. Rev. D64 ('01)

スファレロン過程

標準理論では、

バリオン数とレプトン数は、それぞれ保存(古典論) $U(1)_B$ and $U(1)_L$ invariance of \mathcal{L}

量子異常(anomaly)によりU(1)_{B+L}は破れる $\partial_{\mu}j^{\mu}_{B+L} = \frac{N_f}{16\pi^2} \begin{bmatrix} g_2^2 \operatorname{Tr}(F_{\mu\nu}\tilde{F}^{\mu\nu}) - g_1^2 B_{\mu\nu}\tilde{B}^{\mu\nu} \end{bmatrix}$ $\partial_{\mu}j^{\mu}_{B-L} = 0$ $U(1)_Y$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - g[A_{\mu}, A_{\nu}]$$

$$\tilde{F}^{\mu\nu} = \frac{1}{2}\epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}$$

$$N_{f} =$$
世代数

$$\begin{aligned} B(t_f) - B(t_i) &= \frac{N_f}{32\pi^2} \int_{t_i}^{t_f} d^4 x \left[g_2^2 \text{Tr}(F_{\mu\nu} \tilde{F}^{\mu\nu}) - g_1^2 B_{\mu\nu} \tilde{B}^{\mu\nu} \right] \\ &= N_f \left[N_{CS}(t_f) - N_{CS}(t_i) \right] \end{aligned}$$

Chern-Simons数 $A_0 = 0$ $N_{CS}(t) = \frac{1}{32\pi^2} \left[d^3 x \,\epsilon_{ijk} \left[g_2^2 \text{Tr} \left(F_{ij} A_k - \frac{2}{3} g_2 A_i A_j A_k \right) - g_1^2 B_{ij} B_k \right] \right]$ $\mathcal{E} = \frac{1}{2}(\mathbf{E}^2 + \mathbf{B}^2) = 0$ ゲージ場の古典的真空 $F_{ij} = B_{ij} = 0 \iff A_i = iU^{-1}(\boldsymbol{x})\partial_i U(\boldsymbol{x}), \quad B_i = \partial_i v(\boldsymbol{x})$ $U(\mathbf{x}): S^3 \to SU(2) \simeq S^3$ $\pi_3(S^3) \simeq \mathbb{Z} \longrightarrow U(x)$ は整数 N_{CS} で分類される

熱的遷移確率を決めるのはゲージ・ヒッグス系の古典解 **sphaleron** $\sigma \varphi \alpha \lambda \epsilon \rho os$ =ready-to-fall [cf. a·sphalt] Klinkhamer and Manton, Phys. Rev. D30 ('84)

鞍点解

有限エネルギー 揺らぎに1つの負モード

SM, 2HDM, MSSM, NMSSMで解が得られている

Chern-Simons数(B+L)の変化とフェルミオン数 • index定理 $n_R - n_L = \frac{g_2^2}{16\pi^2} \int d^4x \operatorname{Tr}(F_{\mu\nu}\tilde{F}^{\mu\nu}) = \text{instanton number}$ spectral flow axial U(1) anomaly $\rightarrow \Delta$ (axial fermion) 2次元U(I)の例 $\Delta Q_5 = \frac{g}{4\pi} \int^{t_f} dt \, dx \, \epsilon_{\mu\nu} F_{\mu\nu} = N_{CS}(t_f) - N_{CS}(t_i)$

$$N_{CS}(t) = \frac{g}{2\pi} \int dx \, A_1(t, x)$$

真空 $A_1(x) = \frac{1}{g} \partial_x \alpha(x)$ with $\alpha(\infty) - \alpha(-\infty) = 2\pi N$ $\implies N_{CS} = N$

 $\pi_1(U(1)) \simeq \pi_1(S^1) \simeq \mathbf{Z}$

Dirac方程式
$$i\gamma^{\mu}(\partial_{\mu} - igA_{\mu}(x))\psi(x) = 0$$
 b.c.: $\psi(x+L) = \psi(x)$
 $\downarrow^{A_0 = 0}$
 $i\partial_t\psi(x) = H\psi(x) \equiv i\sigma_3(\partial_x - igA_1(x))\psi(x) = \begin{cases} i(\partial_x - igA_1(x))\psi_L(x) \\ -i(\partial_x - igA_1(x))\psi_R(x) \end{cases}$
 $tl: 依らないゲ - ジ 変換 \quad \tilde{\psi}(x) = \exp\left(ig\int_0^x dx'A_1(x)\right)\psi(x)$
 $H\tilde{\psi}(x) = i\sigma_3\partial_x\tilde{\psi}(x)$ 自由粒子
個し $\tilde{\psi}(x+L) = e^{ig\int_0^L dxA_1(x)}\psi(x+L) = e^{i\alpha L}\tilde{\psi}(x)$
解 $\tilde{\psi}(x) = e^{i_{\mu}x}$ with $p = \frac{2\pi n}{L} + \alpha$
 $H\tilde{\psi}_L(x) = +p\tilde{\psi}_L(x)$
 $H\tilde{\psi}_R(x) = -p\tilde{\psi}_R(x)$

バリオン数(B+L)変化率 (1/volume/time)

4次元SU(2) I Higgs doublet

[Arnold & McLerran, Phys. Rev. D36 ('87)]

*** broken phase**

ゆらぎのゼロ・モード: $\mathcal{N}_{tr} = 26$ $\mathcal{N}_{rot} = 5.3 \times 10^3$ for $\lambda = g^2$ ゆらぎの負モード: $\omega_-^2 \simeq (1.8 \sim 6.6) m_W^2$ for $10^{-2} \le \lambda/g^2 \le 10$ k = O(1)

★ symmetric phase SU(2) pure gauge系

 $\Gamma_{\rm sph}^{(s)}(T) \simeq \kappa (\alpha_W T)^4$

 $\kappa = 1.09 \pm 0.04$ [Ambjorn & Krasnitz, Phys. Lett. B362 ('95)] **MC simulation** $\langle N_{CS}(t)N_{CS}(0) \rangle \sim \langle N_{CS} \rangle^2 + Ae^{-\Gamma V t}$ Flavor Physics Workshop 2009 mass scaleの無いsymmetric phaseでも、 **有限温度で(B+L)を変える過程をスファレロン過程**という

初期宇宙の高温状態で スファレロン過程が平衡になったら?

様々な素過程、スファレロン過程、宇宙膨張 の時間スケールを比較する

宇宙の膨張率
$$H(T) = \sqrt{\frac{8\pi G}{3}\rho(T)} \simeq 1.66\sqrt{g_*}\frac{T^2}{m_{\rm Pl}}$$

9*:放射自由度 (106.75 @T>TEW)

素粒子反応の時間スケール

対称相: $\bar{t}_{QCD} < \bar{t}_{EW} < \bar{t}_{sph}^{(sym)} << H(T)^{-1}$ 全てのゲージ相互作用とスファレロン過程は化学平衡

スファレロン過程が化学平衡になったら、

前提: 全てのゲージ、Yukawa相互作用は化学平衡 *B-L*は保存される

$$B \propto (B-L)$$
 $L \propto (B-L)$

[Harvey & Turner, Phys. Rev. D42 ('90)]

現在の宇宙に物質が存在するためには、

★ スファレロン過程が凍結する前に、B-Lが存在する。
 ★ B+Lを電弱相転移で生成し、且つ、
 その後直ちにスファレロン過程が凍結される。

の何れかでなければならない。

電弱バリオン数生成

標準理論やその拡張に基づく 検証可能 制限がきつい

(1) バリオン数保存の破れ スファレロン過程 但し、生成直後に凍結すべし

(2) CP対称性の破れ KM位相では不十分(後述)
 標準理論の拡張 SUSY-SM, extra Higgs, ...

 (3) 非平衡状態 T=100GeVでは、宇宙膨張は無視できる
 *i*_{EW} = 10GeV⁻¹ < *i*^(sym)_{sph} = 10³GeV⁻¹ ≪ *H*(*T*)⁻¹ = 10¹⁴GeV⁻¹

 電弱相転移が、相境界の形成・成長を伴う一次転移

 標準理論の拡張が必要(後述)

電弱バリオン数生成の概要

対称相で保存される量子数 Q_Y, I_3

対称相でのスファレロン過程にバイアス $\mu_B \neq 0$

詳しくは、 KF, Prog. Theor. Phys. 96 ('96) を参照

その他のreview:

Rubakov and Shaposhnikov, Phys. Usp. 39 ('96) 461
Riotto and Trodden, Ann. Rev. Nucl. Part. Sci. 49 ('99) 35
Bernreuther, Lect. Notes Phys. 591 ('02) 237

QCD correction, wallとの多重散乱によるdecoherence [Gavela, et al., Nucl. Phys. B430 ('94)] [Huet and Sather, Phys. Rev. D51 ('95)]

$$\implies \left|\frac{n_B}{s}\right| < 10^{-26}$$

1st order EWPT と CP violationのため拡張が必要

電弱相転移

自発的に破れているSU(2)xU(1)ゲージ対称性が高温で回復

Effective Potential (自由エネルギー密度) を使って調べる
標準理論
$$V_{\text{eff}}(v;T) = -\frac{1}{2}\mu^2 v^2 + \frac{\lambda}{4}v^4 + 2Bv_0^2 v^2 + Bv^4 \left[\log\left(\frac{v^2}{v_0^2}\right) - \frac{3}{2}\right] + \bar{V}(v;T)$$
$$B = \frac{3}{64\pi^2 v_0^4} (2m_W^4 + m_Z^4 - 4m_t^4)$$
$$\bar{V}(v;T) = \frac{T^4}{2\pi^2} \left[6I_B(a_W) + 3I_B(a_Z) - 6I_F(a_t)\right], \quad (a_A = \frac{m_A(v)}{T})$$
$$I_{B,F}(a) \equiv \int_0^\infty dx \, x^2 \log\left(1 \mp e^{-\sqrt{x^2 + v^2}}\right)$$

高温展開 $[a = m/T \ll 1]$
$$I_B(a) = -\frac{\pi^4}{45} + \frac{\pi^2}{12}a^2 - \frac{\pi}{6}(a^4)^{4va} - \frac{a^4}{16}\log\frac{\sqrt{a^2}}{4\pi} - \frac{a^4}{16}\left(\gamma_E - \frac{3}{4}\right) + O(a^6)$$
$$I_F(a) = \frac{7\pi^4}{360} - \frac{\pi^2}{24}a^2 - \frac{a^4}{16}\log\frac{\sqrt{a^2}}{\pi} - \frac{a^4}{16}\left(\gamma_E - \frac{3}{4}\right) + O(a^6)$$

$T > m_W, m_Z, m_t$ として展開すると、

$$\begin{aligned} V_{\text{eff}}(v;T) &\simeq D(T^2 - T_0^2)v^2 - E T v^3 + \frac{\lambda_T}{4}v^4 \\ D &= \frac{1}{8v_0^2}(2m_W^2 + m_Z^2 + 2m_t^2), \qquad E = \frac{1}{4\pi v_0^3}(2m_W^3 + m_Z^3) \sim 10^{-2} \\ \lambda_T &= \lambda - \frac{3}{16\pi^2 v_0^4} \Big[2m_W^4 \log \frac{m_W^2}{\alpha_B T^2} + m_Z^4 \log \frac{m_Z^2}{\alpha_B T^2} - 4m_t^4 \log \frac{m_t^2}{\alpha_F T^2} \\ T_0^2 &= \frac{1}{2D}(\mu^2 - 4Bv_0^2), \qquad \log \alpha_{F(B)} = 2\log(4)\pi - 2\gamma_E \end{aligned}$$

 $T_C \sigma v = 0$ と縮退した極小が v_C に存在

$$\Gamma_{
m sph}^{
m (br)} < H(T_C) \iff rac{v_C}{T_C} \gtrsim 1$$

 $v_C = \frac{2ET_C}{\lambda_{T_C}}$

sphaleron decoupling condition

→
$$\lambda$$
に上限 $\xrightarrow{m_h = \sqrt{2} \lambda v_0}$ $m_h < 46 \text{GeV}$

格子理論によるMC計算

スカラー場 $\Phi(x)$ 本 格子点 (サイト) ゲージ場 $U_{\mu}(x) = e^{igA_{\mu}(x)} \longrightarrow$ リンク $Z(T) = \operatorname{Tr}\left(e^{-H/T}\right) = \int_{\phi(1/T)=\phi(0)} [d\Phi \, dU_{\mu}] \exp(-S_E[\Phi, U])$ 標準理論 3次元系 高温極限 [Laine & Rummukainen, hep-lat/9809045] $m_h < 66.5 \pm 1.4 \text{GeV}$ で一次転移 [Csikor, hep-lat/9910354] それぞれ に相転移のend point

電弱相転移が一次転移となるには Omega boson loopからの寄与 $V_{
m eff}(v;T) \sim -T \left(m(v)^2
ight)^{3/2}$ Higgsと相互作用するbosonで、 $m(v)^2 \sim g^2 v^2$ (for $v \sim 0$) 2HDMのextra Higgs, SUSY-SMのsfermion $m(v)^2 = m_0^2 + g^2 v^2 \quad (m_0^2 \ll g^2 v_0^2)$ 例. MSSM $m_{H^{\pm}} > 200 \text{GeV} \longrightarrow$ 相転移はSM-like light Higgs, light stop $V_{\text{eff}}(v_1, v_2, v_3 = 0; \mathbf{T_C})$ 150 $m_h < 105 \text{GeV}, \ m_{\tilde{t}_1} < m_t$ $\rightarrow v_C/T_C > 1$ 100 v_2 Singlet scalarを含む理論の新しい 50 型の相転移 NMSSM [KF, Tao and Toyoda, PTP 114 ('05)]

Flavor Physics Workshop 2009

²⁵ 34

20

10

 v_1

CP対称性の破れ

★ scalar self-interactionの複素パラメータ $\lambda_{6,7}$ in 2HDM; μB , A in the MSSM

★ complex Majorana mass gaugino mass, µ in the MSSM

★ スカラー場の期待値が複素数 複数のスカラー場の期待値の相対位相 バリオン数生成に効くのはbubble wall近傍

これらの位相のある組合わせがCP対称性を破る $\operatorname{Im}(\mu M_2), \operatorname{Im}(\mu A_t), \cdots$

EDM, decay asym.等から制限

バリオン数評価の例

2-Higgs doublet model

bubble wall profileが空間に依存するCP位相を持つ

 $(i\gamma \cdot \partial - m(z))\psi(x) = 0 \qquad m(z) = m_0 \frac{1 - \tanh(az)}{2} e^{-i\frac{\pi}{2}[1 + \tanh(az)]}$ 非対称相(z=-∞)ではCP保存

wall width $= \frac{1}{a}$ \simeq wave length of the carrier \downarrow $\Delta R = O(1)$

ΔR から対称相に流れ込むカイラル・チャージ F_Y を計算

$$\frac{n_B}{s} \simeq 3\mathcal{N} \frac{100}{\pi^2 g_*} \cdot \kappa \alpha_W^4 \cdot \frac{F_Y}{v_w T^3} \cdot \tau T \qquad \begin{array}{l} \mathcal{N} = O(1) \\ v_w = \text{wall velocity} \end{array}$$
$$= \text{mean free path} \qquad \tau T \simeq \begin{cases} 1 & (\text{quarks}) \\ 10^{2-3} & (\text{leptons}) \end{cases}$$

m.f.p.は全断面積 MC simulationでは前方散乱が多い quarkに対して $\tau T = 10 - 10^3$ (max. at $v_w = 1/\sqrt{3}$)

optimal case
$$\frac{n_B}{s} \simeq 10^{-3} \cdot \frac{F_Y}{v_w T^3}$$

 $\frac{F_Y}{v_w T^3} = O(10^{-7}) \longrightarrow +分なバリオン数$

このtoy modelではCP位相をO(1)にしているが、10-3でもOK

bubbl wallのprofileと速度
wall近傍のCP位相
何がcarrierになるか

レプトン数生成

レプトン数生成後に<mark>スファレロン過程が平衡</mark>に なる時期があれば、バリオン数が残る。

seesaw model

 $\Gamma(N_R \rightarrow l\phi) \simeq H(T) \text{ at } T \simeq m_{N_R}$ CP violation in the decay vertex

review articles

Buchmüller, Di Bari and Plümacher, Ann. Phys. 315 ('05) Buchmüller, Peccei and Yanagida, Ann. Rev. Nucl. Part. Sci. 55 ('05)

seesaw model

SM+singlet N_R 2-spinor notation $\mathcal{L}_Y = y_{ij} \epsilon^{ab} l_{aiL} e^c_{jR} \Phi_b - h_{ij} \epsilon^{ab} l_{aiL} N^c_{jR} \tilde{\Phi}_b - \frac{1}{2} M_{ij} N^c_{iR} N^c_{jR} + \text{h.c.}$ a, b = 1, 2: SU(2) $i, j = 1 - N_f:$ generation $l_{L} = \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix}, \quad \Phi = \begin{pmatrix} \phi^{0} \\ \phi^{-} \end{pmatrix}, \quad \tilde{\Phi} = -i\tau_{2}\Phi^{*} = \begin{pmatrix} -\phi^{+} \\ \phi^{0*} \end{pmatrix}$ y, h, M : complex $N_f \times N_f$ matrix $h \neq 0$ かつ $M \neq 0$ ---> Lepton Number Violation 真空 $\langle \Phi \rangle = \begin{pmatrix} 0 \\ v_0 / \sqrt{2} \end{pmatrix}$ $\longrightarrow \mathcal{L}_Y \sim -\frac{y_{ij}v_0}{\sqrt{2}}e_{iL}e_{jR}^c - \frac{h_{ij}v_0}{\sqrt{2}}\nu_{iL}N_{iR}^c - \frac{1}{2}M_{ij}N_{iR}^c N_{jR}^c + \text{h.c.}$ $= -e_L^T m_e e_R^c - \nu_L^T m_{\nu} N_R^c - \frac{1}{2} N_R^{cT} M N_R^c + \text{h.c.}$

 $U_L^{(e)} m_e U_R^{(e)} = \text{diag}(m_e, m_\mu, m_\tau), \quad S_L m_\nu S_R = \Lambda_D = \text{diagonal}$ $z z \sim e_R^c = U_R^{(e)} e_R^{\prime c}, \quad e_L = U_L^{(e)T} e_L^{\prime}, \quad N_R^c = S_R N_R^{\prime c}, \quad \nu_L = S_L^T \nu_L^{\prime}$ $\tilde{M} = S_R^T M S_R$ とおくとmass termは $\mathcal{L}_m = -m_{i\,e} e_{iL}^{\prime T} e_{iR}^{\prime c} - \frac{1}{2} \begin{pmatrix} \nu_L^{\prime T} & N_R^{\prime cT} \end{pmatrix} \begin{pmatrix} 0 & \Lambda_D \\ \Lambda_D & \tilde{M} \end{pmatrix} \begin{pmatrix} \overline{\nu_L^{\prime}} \\ N_R^{\prime c} \end{pmatrix} + \text{h.c.}$ $V = \begin{pmatrix} 1 & \Lambda_D M^{-1} \\ -\tilde{M}^{-1}\Lambda_D & 1 \end{pmatrix} \quad \begin{bmatrix} V^{\dagger}V = 1 + O(\Lambda_D^2 \tilde{M}^{-2}) \end{bmatrix}$ により、ブロック対角化し[up to $O(\Lambda_D^2 \tilde{M}^{-2})$]、各ブロックを $-T_L^T (\Lambda_D \tilde{M}^{-1} \Lambda_D) T_L = \Lambda_l$ $T_{R}^{T}\tilde{M}T_{R}=\Lambda_{h}$

で対角化

$$\eta_{lL} = T_L^{\dagger} \left(\nu_L' - \Lambda_D (\tilde{M}^{-1})^{\dagger} N_R'^c \right)$$
$$\eta_{hL} = T_R^{\dagger} \left(N_R'^c + (\tilde{M}^{-1})^{\dagger} \Lambda_D \nu_L' \right)$$

ゲージ相互作用

$$\mathcal{L}_{CC} \sim \frac{g_2}{2\sqrt{2}} \left[\bar{e}_L \bar{\sigma}^\mu \nu_L + \nu_L \sigma^\mu \bar{e}_L \right] W^-_\mu + \text{h.c.}$$

$$\simeq \frac{g_2}{2\sqrt{2}} \left[\bar{e}_L \bar{\sigma}^\mu (U_L^{(e)*} S_L^T T_L) \eta_{lL} + \eta_{lL} \sigma^\mu (T_L^T S_L U_L^{(e)\dagger}) \bar{e}'_L \right] W^-_\mu + \text{h.c.}$$

$$\left(U_{MNS}\right)_{fi} = \left(U_L^{(e)*}S_L^T T_L\right)_{fi}$$

f: lepton flavor i: mass eigenstate

実験・観測で測るのは、

 Λ_l の成分の自乗差 U_{MNS}

leptogenesisと直接は関係ない

leptogenesisの舞台は100GeV以上の対称相 gauge boson, lepton/tmassless Higgs bosonはすべてphysicalで同じ質量 heavy- ν の質量固有状態は、Mを対角化するもの **CP violation** 質量固有状態 N_i のdecay asymmetry $\boldsymbol{\varepsilon_i} \equiv \frac{\sum_j \Gamma(N_i \to l_j \phi) - \sum_j \Gamma(N_i \to \overline{l_j} \phi)}{\sum_j \Gamma(N_i \to l_j \phi) + \sum_j \Gamma(N_i \to \overline{l_j} \phi)}$ $\leftarrow h_{ii} N_R l_L \Phi \mathcal{O}$ Yukawa coupling 非平衡状態 宇宙膨張率~Nの崩壊率 膨張宇宙の中のBoltzmann方程式

Boltzmann equation

$$\frac{dn_{\psi}(t)}{dt} + 3H(t)n_{\psi}(t) = -\sum_{i,j,\cdots} \left[\gamma(\psi \to i+j+\cdots) - \gamma(i+j+\cdots \to \psi)\right]$$
$$-\sum_{a,i,j,\cdots} \left[\gamma(\psi + a \to i+j+\cdots) - \gamma(i+j+\cdots \to \psi + a)\right]$$

ここで反応率は

$$\gamma(\psi + a + b + \dots \rightarrow i + j + \dots)$$

$$= \int d\tilde{p}_{\psi} d\tilde{p}_{a} \cdots d\tilde{p}_{j} (2\pi)^{4} \delta^{4} (p_{\psi} + p_{a} + \dots - p_{i} - p_{j} - \dots)$$

$$\times |\mathcal{M}(\psi + a + b + \dots \rightarrow i + j + \dots)|^{2} f_{\psi} f_{a} f_{b} \cdots (1 \pm f_{i}) (1 \pm f_{j}) \cdots$$

$$d\tilde{p} \equiv \frac{d^3 p}{(2\pi)^3 2E_p}$$
 $f_{\psi}(t, p) = 粒子の分布関数$ +:boson, –:fermion

$$m_{\psi}(t) = \int \frac{d^3 \boldsymbol{p}}{(2\pi)^3} f_{\psi}(t, \boldsymbol{p})$$

$$f_{\psi}^{\text{eq}}(1 \pm f_{i}^{\text{eq}})(1 \pm f_{j}^{\text{eq}}) \cdots = \frac{1}{e^{\beta E_{\psi}} \mp 1} \frac{e^{\beta E_{i}}}{e^{\beta E_{i}} \mp 1} \frac{e^{\beta E_{j}}}{e^{\beta E_{j}} \mp 1} \cdots$$

$$\mathcal{I} \stackrel{\mathcal{I}}{\mathcal{I}} \stackrel{\mathcal{I}}{\mathcal{I}} \stackrel{\mathcal{I}}{\mathcal{I}} - \mathbf{保存} = \frac{e^{\beta E_{\psi}}}{e^{\beta E_{\psi}} \mp 1} \frac{1}{e^{\beta E_{i}} \mp 1} \frac{1}{e^{\beta E_{j}} \mp 1} \cdots = f_{i}^{\text{eq}} f_{j}^{\text{eq}} \cdots (1 \pm f_{\psi}^{\text{eq}})$$

これから

$$\gamma(\boldsymbol{\psi} \to i + j + \cdots) - \gamma(i + j + \cdots \to \boldsymbol{\psi})$$

= $\int d\tilde{\boldsymbol{p}}_{\psi} d\tilde{\boldsymbol{p}}_{i} \cdots (2\pi)^{4} \delta^{4}(p_{\psi} - p_{i} - p_{j} - \cdots) f_{\psi}^{\text{eq}}(1 \pm f_{i}^{\text{eq}})(1 \pm f_{j}^{\text{eq}}) \cdots$
 $\times \left[|\mathcal{M}(\psi \to i + j + \cdots)|^{2} - |\mathcal{M}(i + j + \cdots \to \psi)|^{2} \right]$

unitarityより

[Kolb and Wolfram, Appendix of Nucl. Phys. B172]

$$\sum_{i,j,\cdots} |\mathcal{M}(\psi \to i + j + \cdots)|^2 (1 \pm f_i^{\text{eq}}) (1 \pm f_j^{\text{eq}}) \cdots$$
$$= \sum_{i,j,\cdots} |\mathcal{M}(i + j + \cdots \to \psi)|^2 (1 \pm f_i^{\text{eq}}) (1 \pm f_j^{\text{eq}}) \cdot$$

$$\gamma(\psi \to i + j + \cdots) - \gamma(i + j + \cdots \to \psi) = 0$$

• CP対称なら
$$n_{\psi} - n_{\bar{\psi}}$$
 は発展しない
 $f_{\psi}(t, p) = f_{\bar{\psi}}(t, p)$ $\mathcal{M}(\alpha \to \beta) = \mathcal{M}(\bar{\alpha} \to \bar{\beta})$
 $n_{\psi} - n_{\bar{\psi}}$ に対するBoltzmann方程式の右辺
 $\gamma(\phi \to i + j + \cdots) - \gamma(i + j + \cdots \to \psi) - [\gamma(\bar{\psi} \to \bar{i} + \bar{j} + \cdots) - \gamma(\bar{i} + \bar{j} + \cdots \to \bar{\psi})$
 $= \int d\tilde{p}_{\psi} \cdots (2\pi)^4 \delta^4(p_{\psi} - p_i - p_j - \cdots)$
 $\times \left\{ \left[|\mathcal{M}(\psi \to i + j + \cdots)|^2 - |\mathcal{M}(\bar{\psi} \to \bar{i} + \bar{j} + \cdots)|^2 \right] f_{\psi}(1 \pm f_i)(1 \pm f_j) \cdots - \left[|\mathcal{M}(i + j + \cdots \to \psi)|^2 - |\mathcal{M}(\bar{i} + \bar{j} + \cdots \to \bar{\psi})|^2 \right] f_i f_j \cdots (1 \pm f_{\psi}) \right\}$
 $= 0$

Boltzmann方程式の解法

 $f(t, p) = \frac{n(t)}{n^{eq}} f^{eq}(p)$ を仮定し、粒子数密度に対する方程式 integrated Boltzmann eq.

$\dot{n}_{\psi}(t) + 3H(t)n(t)$

$$= -\sum_{i,j,\dots} \left[\frac{n_{\psi}}{n_{\psi}^{eq}} \gamma^{eq}(\psi \to i + j + \dots) - \frac{n_i n_j \cdots}{n_i^{eq} n_j^{eq} \cdots} \gamma^{eq}(i + j + \dots \to \psi) \right]$$
$$-\sum_{a,i,\dots} \left[\frac{n_{\psi} n_a}{n_{\psi}^{eq} n_a^{eq}} \gamma^{eq}(\psi + a \to i + j + \dots) - \frac{n_i n_j \cdots}{n_i^{eq} n_j^{eq} \cdots} \gamma^{eq}(i + j + \dots \to \psi + a) \right]$$
$$f^{eq} \operatorname{chip} b \operatorname{tcccn} x$$

full Boltzmann eq.との比較

Basbøll and Hannested, JCAP 0701 ('07) [hep-ph/0609025] Garayoa, Pastor, Pino, Rius and Vives, hep-ph/0905.4834

$$Y_{\psi} \equiv \frac{n_{\psi}}{s}$$
 を用いると、 $\dot{n}_{\psi}(t) + 3H(t)n_{\psi}(t) = s\dot{Y}_{\psi}(t)$

数値解の例

toy model with 2 flavors $M_1 = 10^{-6} m_{\rm Pl}$, $M_2/M_1 = 10$, $\varepsilon_1 = \varepsilon_2 = 10^{-8}$

初期条件:
$$Y_N = Y_N^{\text{eq}}, Y_l = Y_{\bar{l}} = Y_l^{\text{eq}}, Y_{\phi} = Y_{\bar{\phi}} = Y_{\phi}^{\text{eq}}$$
 at $z = \frac{M_1}{T} = 0.01$

 $(hh^{\dagger})_{22} = 100(hh^{\dagger})_{11}$

1x10 ⁻⁶ -1x10 ⁻⁷ $(hh^{\dagger})_{22} = 10(hh^{\dagger})_{11}$ Y_L 1x10⁻¹⁰-1x10 ⁻⁸ 1x10 ⁻⁹-1x10 ⁻¹⁰-1x10 ⁻¹¹ 1x10 ⁻¹² 1x10 ⁻¹³ 1×10^{-11} 1x10⁻⁴ 1x10⁻³ 1x10⁻² 1x10⁻⁵ 1x10⁻⁶ 1x10⁻¹ 1x10 ⁻¹⁴ $(hh^{\dagger})_{11}$ 0.1 0.01 $z = M_1/T$

 $(hh^{\dagger})_{11}$ の $(hh^{\dagger})_{22}$ 大きい方で決まる。

Flavor Physics Workshop 2009

1x10⁻⁹

N生成中にも レプトン数生成 30

10

seesaw模型への制限

生成されるレプトン数 $h_{ij}: \nu_L - N_R$ Yukawa $M_i:$ heavy- ν mass

両者の関係は直接的ではない 模型の仮定が必要 GUTs, 質量行列の構造(texture),...

 $(y,h) \leftrightarrow (y^{(d)},y^{(u)})$

おわりに

宇宙のバリオン数, Dark Matter, Dark Energy 存在は明らかだが、決定的な理論は無い どれも標準理論の拡張を必要とする

バリオン数生成

電弱バリオン数生成 レプトン数生成
 非平衡過程の取り扱い
 現象論的制限を取り入れること
 CP, Higgsの物理 ニュートリノ振動, seesaw模型
 これから実験・理論の両面で進展するでしょう
 若い方は、是非、チャレンジして下さい