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1 Finite groups DN and QN

The dihedral symmetry is a symmetry of regular polygon. DN symmetry appears in polyatomic
molecules, for instance. As we will see, the binary dihedral (dicyclic) group Q2N may be regarded as
the covering group of DN . Q2N has pseudo-real representations, which is welcome for chiral theories
like the standard model (SM).

1.1 Definitions

The group presentation for the dihedral groups DN is given by

{ADN
, BD; (ADN

)N = B2
D = E, B−1

D ADN
BD = A−1

DN
}, (1)

and

{AQN
, BQ; (AQN

)N = E, B2
Q = (AQN

)N/2, B−1
Q AQN

BQ = A−1
QN
} (2)

for the binary dihedral group QN , where E is the identity element. For the binary dihedral group
QN , N should be even starting with 4, while N for DN starts with 3. The 2N group elements are:

G = {E, A, (A)2, . . . , (A)N−1, B, AB, (A)2B, . . . , (A)N−1B} (3)

both for DN and QN . A two-dimensional representation of A and B is given by

ADN
= AQN

=

(
cos φN sinφN

− sin φN cos φN

)
with φN = 2π/N, (4)

BD =

(
1 0
0 −1

)
for DN , BQ =

(
i 0
0 −i

)
for QN . (5)

Note that det AQN
= detBQN

= 1, implying that QN is a subgroup of SU(2). It follows that the
dihedral group is a subgroup of SO(3), which one sees if one embeds ADN

and BD into 3× 3 matrices
[1]

ADN
→




cos φN sinφN 0
− sinφN cos φN 0

0 0 1


 , BD →




1 0 0
0 −1 0
0 0 −1


 . (6)

It also follows that DN has only real representations, while QN can have real as well as pseudo-real
representations. However, the smallest binary dihedral group that contains both real and pseudo-real
nonsinglet representations is Q6, because Q4 has only pseudo-real nonsinglet representations. Note
that the irreducible representations (irreps) of DN and QN are either one- or two-dimensional.
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QN is the “double-covering group” of DN in the following sense. Consider the matrices of DN/2,
i.e., ADN/2

and BD, and define ÃQN
= ADN/2

, B̃Q = BD. Note that ÃQN
have exactly the same

properties as AQN
. Therefore, the set

{E, ÃQN
, (ÃQN

)2, . . . , (ÃQN
)N−1, B̃Q, ÃQN

B̃Q, (ÃQN
)2B̃Q, . . . , (ÃQN

)N−1B̃Q} (7)

is a set of QN elements. Since however (ÃQN
)N/2 = (ADN/2

)N/2 = E by definition, the DN/2 elements
appear twice in (7).

2 Application to the SUSY Flavor Problem [2]

Low energy supersymmetry (SUSY) is introduced to protect the Higgs mass from the quadratic di-
vergences. Since low energy SUSY is broken, the breaking of SUSY must be soft, whatever its origin
is, to maintain the very nature of low energy SUSY. Unfortunately, the most arbitrary part of a phe-
nomenologically viable supersymmetric extension of the standard model (SM) is this soft supersym-
metry breaking sector, because renormalizability allows an introduction of many soft supersymmetry
breaking (SSB) parameters. In the minimal supersymmetric standard model (MSSM), more than 100
SSB parameters can be introduced. The problem is not only this large number of the SSB parameters,
but also the fact that one has to highly fine tune them so that they do not induce unacceptably large
flavor changing neutral currents (FCNCs) and CP violations. This problem, called the SUSY flavor
problem, is not new, but has existed ever since supersymmetry found phenomenological applications.

There are several theoretical approaches to overcome this problem. In this report we consider a
mechanism which is based on non-abelian discrete flavor symmetries.

2.1 D3(= S3) model

Three generations of the quarks and leptons belong to the reducible representation of D3, i.e., 3 = 1+2,
respectively [3, 4]. We also introduce a D3 doublet Higgs pair, HU

I ,HD
I (I = 1, 2), as well as a D3

singlet Higgs pair, HU
3 ,HD

3 . The same R-parity is assigned to these fields as in the MSSM. Then we
assume that the total superpotential is invariant under D3 symmetry [2, 5]

The SSB sector consists of:
(i) Gaugino masses:
The gaugino masses are the same as in the MSSM.
(ii) Trilinear couplings:
The trilinear couplings can be read off from the superpotential, from which one can obtain the soft
left-right mass matrices:

m̃2
aLR =




ma
1A

a
1 + ma

2A
a
2 ma

2A
a
2 ma

5A
a
5

ma
2A

a
2 ma

1A
a
1 −ma

2A
a
2 ma

5A
a
5

ma
4A

a
4 ma

4A
a
4 ma

3A
a
3


 (a = l̃, q̃), (8)

where Aa
i are free parameters of dimension one.

(ii) Soft scalar masses:
D3 invariant soft scalar masses are diagonal:

m̃2
aLL = m2

a




aa
L 0 0
0 aa

L 0
0 0 ba

L


 , m̃2

aRR = m2
a




aa
R 0 0
0 aa

R 0
0 0 ba

R


 (a = l̃, q̃), (9)
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where ml̃,q̃ denote the average of the slepton and squark masses, respectively, and (aL(R), bL(R)) are
dimensionless free parameters of O(1).

We consider FCNC processes, e.g. Br(µ → e + γ), that are proportional to the off-diagonal
elements of

∆a
LL,RR = U †

aL,R m̃2
aLL,RR UaL,R and ∆a

LR = U †
aL m̃2

aLR UaR. (10)

The experimental bounds on the dimensionless quantities

δa
LL,RR,LR = ∆a

LL,RR,LR/m2
ã (a = l, q), (11)

are known. We have computed the theoretical values of δ’s for the present model, where

∆aa
L,R = aa

L,R − ba
L,R, Ãa

i =
Aa

i

mã
(a = l, q). (12)

We have fond that the experimental bounds for the most of the cases are satisfied, if |∆a|’s and
|(Ãi − Ãj)|’s are less than about one. The experimental constraints coming from the CP violations in

the K0− K̄0 system on δd
12, more precisely on

√
|Im(δd

12)
2
LL,RR|,

√
|Im(δd

12)LL(δd
12)RR| and |Im(δd

12)LR|
are very severe. Note however, one of the most strong constraint coming from ε′/ε on |Im(δd

12)LR|
is satisfied. The constraints from the electric dipole moment (EDM) of the neutron on |Im(δd

11)LR|
and |Im(δu

11)LR| are also very severe. From the analyses in this section, we conclude that, apart from
certain fine tuning [5], the FCNCs and CP phases, which are induced by the SSB parameters in
O(1) disorder at MSUSY, are sufficiently suppressed to satisfy the experimental constraints. This is a
consequence of D3(= S3) flavor symmetry.

2.2 Q6 model [1]

One of the successful Ansätze for the quark mass matrices is of a nearest neighbor interaction (NNI)
type:

M =




0 C 0
±C 0 B
0 B′ A


 . (13)

We would like to derive the mass matrix (13) solely from a symmetry principle. On finds that two
conditions should be met: (i) There should be real as well as pseudo-real nonsinglet representations,
and (ii) there should be the up- and down-type Higgs SU(2)L doublets (type II Higgs). The smallest
finite group that allows both real and pseudo-real nonsinglet representations is Q6 as already found
out. So, the Higgs sector of the MSSM fits the desired Higgs structure. In Table 1 we write the Q6

assignment of the quark and lepton supermultiplets:

Q,L U c, Dc, Ec, N c Hu,Hd Q3, L3 U c
3 , Dc

3, E
c
3, N3 Hu

3 ,Hd
3

Q6 2 2′ 2′ 1′ 1′′′ 1′′′

Table 1. Q6 assignment of the matter supermultiplets.

We have found that CP phases can be spontaneously induced in this model. Consequently, the
quark sector contains 8 real parameters with one independent phase to describe the quark masses and
their mixing. Predictions in the |Vub| − η̄, |Vub| − sin 2β(φ1) and |Vub| − |Vtd/Vts| planes are given in
[1]. A normal as well as an inverted spectrum of neutrino masses is possible. But if one employes
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another Q6 assignment (as given in Table 2), one obtains exactly the same leptonic sector as the D3

model with a Z2 symmetry in that sector.

L,Ec, N c L3, E
c
3 N c

3

Q6 2 1′′ 1
Table 2. analternativeQ6 assignment of the quark supermultiplets is the same as in Table 1.

Because of Q6 symmetry, it turns out that R-parity violating couplings are almost absent. Out
of the 96 R-parity breaking cubic couplings that are allowed in the MSSM superpotential, Q6 allows
only one coupling

λ′[(L1Q2 + L2Q1)Dc
1 + (L1Q1 − L2Q2)Dc

2]. (14)

Many couplings vanish because of color antisymmetry andSU(2)L antisymmetry. Furthermore, all
baryon number violating cubic terms are forbidden by Q6 alone. This means that there is no proton
decay problem in the present model.

As for the SUSY flavor problem, we may expect that Q6 suppresses strongly FCNC and CP
violating processes that are induced by the SSB terms. However, the constraints coming from the
EDM of neutron, electron and mercury atom are very severe, as we have seen in the D3 model.
For instance, (δd

11)LR has to satisfy |Im(δd
11)LR| < 6.7 × 10−8(m̃q/100 GeV)2. Similar constraints

exist for (δu
11)LR and (δe

11)LR, too. (The quantity δd
LR is defined in (11).) Since the CP phases

can be spontaneously induced in the Q6 model, and thanks to Q6 symmetry the mass matrix m̃2
dLR

has exactly the same structure as the mass matrix of the matter supermultiplets, we conclude that
(δd

11)LR is a real number. From the same reason, all δLR are real; phase alignment occurs. Thus, we
can satisfy the most stringent constraint on the A terms without any fine tuning. This is true not
only at a particular energy scale, but also for the entire energy scale, which should be compared with
the case of the MSSM.
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