Results on the Electroweak Phase Transition in the NMSSM with Explicit CPV

Shuichiro Tao (Kyushu Univ.)

with

Koichi Funakubo (Saga Univ.) and Fumihiko Toyoda (Kinki Univ.)

Jan. 12, 2005

YITP Workshop, "CP violation and matter and anti-matter asymmetry"

Contents

- We study the PT in the NMSSM
- The weak scale vev. of the singlet scalar is considered
- We find four different types of phase transitions
- Solution State And Antice Three of which have two-stage nature
- One of the two-stage transitions admits strongly first order EWPT, even with heavy squarks
- We introduce tree-level CP violation

Introduction

Electroweak baryogenesis (EWBG)

- is related to physics at our reach
- require strongly first-order phase transition → light boson is required
- EWBG in the Minimal SM
 - ✓ light boson, $m_h > 50 \text{ GeV}$ conflict to present bound, $m_{h_{\rm SM}} > 114 \text{ GeV}$
 - Second CPV in the CKM matrix is too small to generate sufficient baryon number

Introduction

Electroweak baryogenesis (EWBG)

- is related to physics at our reach
- Ice strongly first-order phase transition $\rightarrow \text{ light boson is required}$

EWBG in the MSSM

- with a light top squark The bound on the lightest Higgs boson restricts the acceptable parameter space severely
- CPV in the soft SUSY X terms first-order EWPT is weakened, when the stop-sector CP violation is large [K. Funakubo, S. T. and F. Toyoda, PTP101]

Introduction

Electroweak baryogenesis (EWBG)

- is related to physics at our reach
- Ice strongly first-order phase transition $\rightarrow \text{ light boson is required}$

EWBG in the NMSSM

- reduces to the MSSM in some limit For such peculiar parameters, we expect the same behavior of the EWPT as that in the MSSM, which has been extensively studied
- We focus on the parameter space far from the MSSM

NMSSM

Next-to-Minimal Supersymmetric Standard Model

- Light Higgs
- CP Violation
- Parameter Set
 - [K. Funakubo and S. T. hep-ph/0409294]

The Model

 $\langle \mathsf{NMSSM} \rangle = \langle \mathsf{MSSM} \rangle + (\text{one gauge singlet})$ $W = f_d H_d Q D^c - f_u H_u Q U^c - \lambda N H_d H_u - \frac{\kappa}{3} N^3$

- solves the μ -problem in the MSSM μ -parameter is induced as $\mu = \lambda \left< N \right>$
- no dimensional parameter in W The scale by which NMSSM is characterized comes from SUSY-breaking terms

In the NMSSM, $m_{\rm SUSY} \gg \langle H \rangle$ or $\langle N \rangle$ is unnatural

The Model

 $\langle \text{NMSSM} \rangle = \langle \text{MSSM} \rangle + (\text{one gauge singlet})$ $W = f_d H_d Q D^c - f_u H_u Q U^c - \lambda N H_d H_u - \frac{\kappa}{3} N^3$

SUSY-breaking soft terms:

$$\mathcal{L}_{\text{soft}} \ni -m_n^2 n^* n + \left[\frac{\lambda A_\lambda n \Phi_d \Phi_u}{3} + \frac{\kappa}{3} A_\kappa n^3 + \text{h.c.} \right]$$

- unremovable CP phases ≤
- global Z₃ symmetry \rightarrow Domain wall problem
 We assume it's already broken by higher dimensional operator

The Model - Higgs Sector

The tree-level Higgs potential:

$$\begin{split} V =& m_1^2 \Phi_d^{\dagger} \Phi_d + m_2^2 \Phi_u^{\dagger} \Phi_u + m_N^2 n^* n - (\lambda A_{\lambda} n \Phi_d \Phi_u + \frac{\kappa}{3} A_{\kappa} n^3 + \text{h.c.}) \\ &+ \frac{g_2^2 + g_1^2}{8} (\Phi_d^{\dagger} \Phi_d - \Phi_u^{\dagger} \Phi_u)^2 + \frac{g_2^2}{2} (\Phi_d^{\dagger} \Phi_u) (\Phi_u^{\dagger} \Phi_d) \\ &+ |\lambda|^2 n^* n (\Phi_d^{\dagger} \Phi_d + \Phi_u^{\dagger} \Phi_u) + |\lambda \Phi_d \Phi_u + \kappa n^2|^2 \end{split}$$

Vacuum expectation values:

$$\langle \Phi_d \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v_d \\ 0 \end{pmatrix}, \quad \langle \Phi_u \rangle = \frac{e^{i\theta}}{\sqrt{2}} \begin{pmatrix} 0 \\ v_u \end{pmatrix}, \quad \langle n \rangle = \frac{e^{i\phi}}{\sqrt{2}} v_n$$

Light Higgs

The structure of the mass matrix changes from that in the MSSM (3 scalar and 2 pseudoscalar if CP cons.)

$$\mathcal{M}^2 = \begin{pmatrix} \mathcal{M}_S^2 \big|_{2 \times 2} & \\ & m_A^2 \end{pmatrix} \rightarrow \begin{pmatrix} \mathcal{M}_S^2 \big|_{3 \times 3} & \mathcal{I} \\ \mathcal{I} & \mathcal{M}_P^2 \big|_{2 \times 2} \end{pmatrix}$$

• "light-Higgs bosons" are allowed \rightarrow Strong 1st order PT

 $m_{h_1} < 114 \text{GeV}$ with $g_{ZZh_1} \sim 0.1$

because of the small g_{ZZh_1} Then the lightest Higgs scalar h_1 can escape from the bound

 $m_{h_{\rm SM}} > 114 {\rm GeV}$

Therefore, we can consider $h_2 \sim h_{\rm SM}$

[Miller, et. al. NPB681]

 $\texttt{9} \text{ light Higgs} \rightarrow \text{Strong 1st order PT}$

- $\textbf{ 9 light Higgs} \rightarrow Strong 1st order PT$
- ${\color{black} {\rm {\small OP}}}$ CP violation at the tree level, ${\color{black} {\rm {\it I}}} \to {\color{black} {\rm {\it Sufficient}}} ~B$ number

 $\mathcal{I} = \operatorname{Im}(\lambda \kappa^* e^{i(\theta - 2\phi)})$

from the vacuum condition, \mathcal{I} related to the other combinations

 $\mathcal{I} \sim \operatorname{Im}(\lambda A_{\lambda} e^{i(\theta + \phi)}) \sim \operatorname{Im}(\kappa A_{\kappa} e^{3i\phi})$

- Only one combination of the phases is physical
- Our formalism is independent of prametrisation for the phases
- One can choose the phase combination not to affect the nEDM

- $\texttt{9} \text{ light Higgs} \rightarrow \text{Strong 1st order PT}$
- \blacksquare CP violation at the tree level, $\mathcal{I} \rightarrow \mathsf{Sufficient} \ B$ number
- Pure NMSSM parameter set
 - vs. MSSM limit

 $v_n \rightarrow \infty$ with λv_n and κv_n fixed \Rightarrow MSSM [Ellis, et. al. PRD39]

Moderate v_n value $\sim 200 \, {\rm GeV}$, and soft masses $< \, {\rm TeV}$

- \rightarrow new features expected
- Iight Higgs bosons are realized
- mass bound on the charged Higgs bosons
 - [K. Funakubo and S. T. hep-ph/0409294]

- $\textbf{ 9 light Higgs} \rightarrow Strong 1st order PT$
- ${\color{black}{\triangleright}}$ CP violation at the tree level, ${\color{black}{\mathcal{I}}} \to {\color{black}{\sf Sufficient}}~B$ number
- Pure NMSSM parameter set

These are Good features for Electroweak baryogenesis

EWPT

Electroweak Phase Transition in the NMSSM

- 🗩 Cubic Term
- Stypes of the PT
- Effects of the CPV
 - [K. Funakubo and S. T. hep-ph/0501052]

Effective Potential

The effective potential at finite temperature $V_{
m eff}(m{v};T) = V_{
m tree}(m{v}) + \Delta V(m{v};T)$

The one-loop correction

$$\begin{split} \Delta V(\boldsymbol{v};T) &= 3 \left[F_0(\bar{m}_Z^2) + \frac{T^4}{2\pi^2} I_B\left(\frac{\bar{m}_Z}{T}\right) + 2F_0(\bar{m}_W^2) + 2 \cdot \frac{T^4}{2\pi^2} I_B\left(\frac{\bar{m}_W}{T}\right) \right] \\ &- 2 \left[F_0(\bar{m}_{\psi_N}^2) + \frac{T^4}{2\pi^2} I_F\left(\frac{\bar{m}_{\psi_N}}{T}\right) \right] \\ &+ N_C \sum_{q=t,b} \left\{ 2 \sum_{j=1,2} \left[F_0(\bar{m}_{\tilde{q}_j}^2) + \frac{T^4}{2\pi^2} I_B\left(\frac{\bar{m}_{\tilde{q}_j}}{T}\right) \right] - 4 \left[F_0(\bar{m}_q^2) + \frac{T^4}{2\pi^2} I_F\left(\frac{\bar{m}_q}{T}\right) \right] \right\} \end{split}$$

where \bar{m} denotes the field-dependent masses and

$$F_0(m^2) = \frac{1}{64\pi^2} \left(m^2\right)^2 \left(\log\frac{m^2}{M^2} - \frac{3}{2}\right), \quad I_{B(F)}(a) = \int_0^\infty dx \, x^2 \log\left(1 \mp e^{-\sqrt{x^2 + a^2}}\right)$$

Effective Potential

The effective potential at finite temperature $V_{
m eff}(m{v};T) = V_{
m tree}(m{v}) + \Delta V(m{v};T)$

The order parameters

$$\boldsymbol{v} = (v_1, v_2, v_3, v_4, v_5)$$

$$\equiv (v_d, v_u \cos \Delta \theta, v_u \sin \Delta \theta, v_n \cos \Delta \varphi, v_n \sin \Delta \varphi)$$

where $\Delta \theta = \theta - \theta_0$ and $\Delta \varphi = \varphi - \varphi_0$ (The $_0$ means T = 0 value)

EWPT is a first-order PT \Leftrightarrow the v Jump vacuum to vacuum

We numerically minimize the $V_{\rm eff}({m v};T)$ in 5 dim. space, and observe the phase transition

EWPT – naive argument

order parameters :
$$\begin{cases} v_d = v \cos \beta(T) = y \cos \alpha(T) \cos \beta(T) \\ v_u = v \sin \beta(T) = y \cos \alpha(T) \sin \beta(T) \\ v_n = y \sin \alpha(T) \end{cases}$$

 $\longrightarrow y^3$ -term, even at the tree level [Pietroni, NPB402]

$$V = \frac{1}{2} \left((m_1^2 \cos^2 \beta + m_2^2 \sin^2 \beta) \cos^2 \alpha + m_N^2 \sin^2 \alpha \right) y^2 - \left(R_\lambda \cos^2 \alpha \sin \alpha \cos \beta \sin \beta + \frac{1}{3} R_\kappa \sin^3 \alpha \right) y^3 + \cdots$$

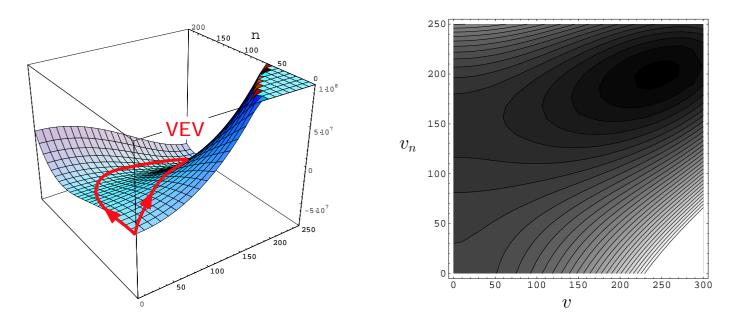
The y^3 -term makes the phase transition along y-direction strongly first order but

validity of the parametrization with a constant α is not obvious

EWPT – naive argument

order parameters :
$$\begin{cases} v_d = v \cos \beta(T) = y \cos \alpha(T) \cos \beta(T) \\ v_u = v \sin \beta(T) = y \cos \alpha(T) \sin \beta(T) \\ v_n = y \sin \alpha(T) \end{cases}$$

 $\longrightarrow y^3$ -term, even at the tree level [Pietroni, NPB402]



The phase transitions in the NMSSM are classified into several types

We found four phases

phase	order parameters	symmetries
EW	$v eq 0$, $v_n eq 0$	fully broken
I, I′	$v=0$, $v_n eq 0$	local $SU(2)_L imes U(1)_Y$
П	$v eq 0$, $v_n = 0$	global $U(1)$
SYM	$v = v_n = 0$	$SU(2)_L imes U(1)_Y$, global $U(1)$

Symmetries

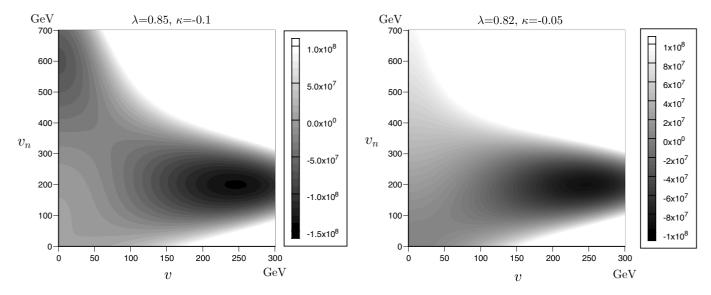
- v : order parameter of the gauge symmetry
- v_n : order parameter of a global U(1) symmetry

because in the subspace of $v_n = 0$ ($v_4 = v_5 = 0$), the effective potential is invariant under the global U(1) transformation

We found four phases

phase	order parameters	symmetries
EW	$v eq 0$, $v_n eq 0$	fully broken
I, I′	$v=0$, $v_n eq 0$	local $SU(2)_L imes U(1)_Y$
П	$v eq 0$, $v_n=0$	global $U(1)$
SYM	$v = v_n = 0$	$SU(2)_L imes U(1)_Y$, global $U(1)$

Examples which develop the phase-I' and II at high T



We found four phases

phase	order parameters	symmetries
EW	$v eq 0$, $v_n eq 0$	fully broken
I, I′	$v=0$, $v_n eq 0$	local $SU(2)_L imes U(1)_Y$
П	$v eq 0$, $v_n=0$	global $U(1)$
SYM	$v = v_n = 0$	$SU(2)_L imes U(1)_Y$, global $U(1)$

The existence of the phases-I, I' and II is a novel feature of the NMSSM

phase-I and I' can be understood: in subspace v = 0

$$\hat{V}_0(v_n) = V_0(0, 0, 0, v_n \cos \Delta \varphi, v_n \sin \Delta \varphi) = \frac{1}{2} m_N^2 v_n^2 - \frac{1}{3} \hat{R}_{\kappa} v_n^3 + \frac{|\kappa|^2}{4} v_n^4,$$

where $\hat{R}_{oldsymbol{\kappa}} \propto oldsymbol{\kappa}$

For a very small $|\kappa|$, the intermediate vacuum can develop far from the origin, phase-I'

We found four phases

phase	order parameters	symmetries
EW	$v eq 0$, $v_n eq 0$	fully broken
I, I′	$v=0$, $v_n eq 0$	local $SU(2)_L imes U(1)_Y$
П	$v eq 0$, $v_n=0$	global $U(1)$
SYM	$v = v_n = 0$	$SU(2)_L imes U(1)_Y$, global $U(1)$

Types of transitions

A: SYM \rightarrow I \Rightarrow EW B: SYM \rightarrow I' \Rightarrow EW

- $\mathsf{C} \colon \mathsf{SYM} \Rightarrow \mathsf{II} \to \mathsf{EW} \qquad \mathsf{D} \colon \mathsf{SYM} \Rightarrow \mathsf{EW}$
- \triangle Type A: MSSM-like EWPT, which proceeds with almost constant $v_n(T)$
- Type B: Strongly first-order EWPT, without light stop, It's NEW!
- \times Type C: It's NEW, but CP phase is ambiguous \rightarrow cannot produce net baryon number
- Type D: Strongly first-order (need light Higgs), with light stop

EWPT – Type B

Parameters								
	heavy stop							
\checkmark small κ								
	aneta	$m_{H^{\pm}}$	A_{κ}	v_n	λ	κ	$m_{ ilde q}$	$m_{ ilde{t}(ilde{b})_R}$
	5	600 GeV	$-100 \mathrm{GeV}$	$200 { m GeV}$	0.85	-0.1	$1000 \mathrm{GeV}$	800GeV

Mass spectrum

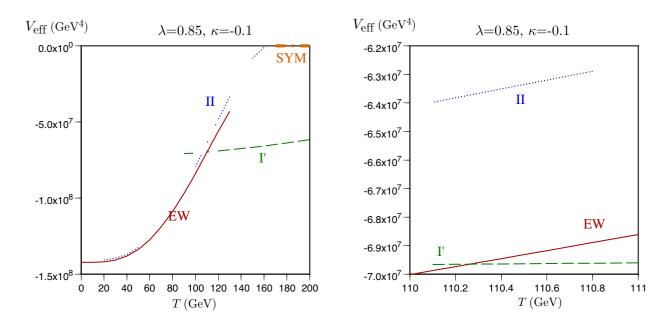
- SM-like Higgs is a third-lightest one
- ${\color{black} {oldsymbol{\wp}}}$ h_2 and h_5 are pseudoscalar
- \checkmark heaviest scalar mass and heaviest pseudoscalar mass are the same order $\mathrm{Tr}\mathcal{M}_S \simeq \mathrm{Tr}\mathcal{M}_P$ if $m_{H^{\pm}}$ is large

	h_1	h_2	h_3	h_4	h_5
mass(GeV)	38.89	75.31	131.11	625.61	627.95
$g^2_{H_iZZ}$	6.213×10^{-8}	0	0.999	6.816×10^{-5}	0

EWPT – Type B

The T dependence of the local minima of the $V_{\rm eff}$

- \checkmark distinct convergent points at the same T are displayed
- \checkmark The values of the $V_{
 m eff}$ are subtracted by the value at the origin
- \checkmark right-hand plot is the close view of the left-hand one near the T_C



Solution In the probability of the probability

CP-Violating Case

Source of the $\ensuremath{\mathsf{CPV}}$

 \checkmark There are infinite sets of CP violating parameters which yield the same value of $\mathcal I$

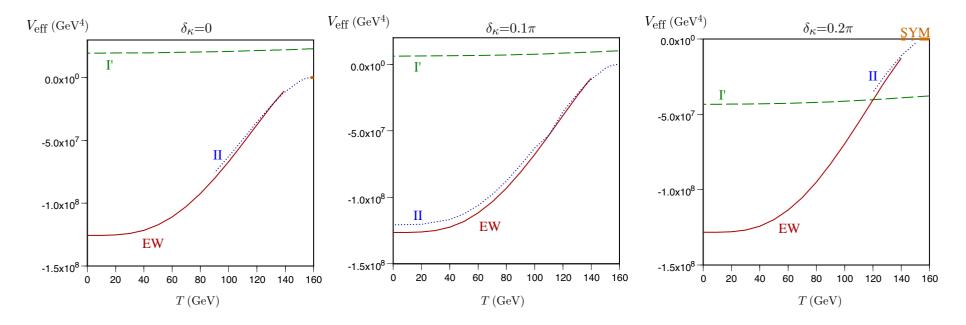
 \rightarrow We constrain them so that the phase relevant to the nEDM vanish

9 We take $Arg\kappa \equiv \delta_{\kappa}$ as an independent parameter

CP-Violating Case

Parameters

almost same as Type-B example, but $(\lambda,\kappa)=(0.85,-0.1)
ightarrow(0.83,-0.07)$



 ${}$ ${}$ For $\delta_\kappa\gtrsim 0.3\pi$, the zero-temperature vacuum is in the phase-I'

- ${}_{igstaclescolor}$ value of the phase-l' is decreases with δ_κ
- \checkmark PT is type-C for $\delta_{\kappa} = 0, 0.1\pi \Rightarrow$ type-B for $\delta_{\kappa} = 0.2\pi$, strongly 1st order
- first-order EWPT is not weakend by tree-level CPV

Summary

In the NMSSM, we worked out to

- search allowed parameters (previous work)
- Solution classify the phases into four types of the phase transitions

Our next interest is in

- For calculating the generated baryon number,
 sphaleron transition rate is needed
 ← sphaleron solution and energy in the NMSSM
- drawing a phase diagram
 - \leftarrow more computer power
- application of the phases