Signature of the MSSM with ν_R s in a long baseline experiment

Results are shown in part in the proceedings for the conference NuFACT04, [arXiv:hep-ph/0410408]

Paper is in progress [arXiv:hep-ph/0502***]

Toshihiko Ota in collaboration with Joe Sato*

Osaka University Japan, *TUM, Munich, Germany

Signature of the MSSM with ν_{R} s in a long baseline experiment – p.1/20

Contents

- Introduction
 - cLFV: lepton flavor violation in charged lepton sector
 - nLFV: lepton flavor violation with neutrinos
- Model independent analysis
 - Feasibility study to detect nLFV signals

based on TO Sato Yamashita, Phys. Rev. D65 (2002) 093015.

- In the MSSM with ν_R s, not only cLFV but also nLFV are induced.
 - Correlation between cLFV and nLFV
 - Size of nLFV couplings. Detectable or not?

Summary

🛇 OSAKA UNIVERSIT

Introduction

Signature of the MSSM with u_R s in a long baseline experiment – p.3/20

Introduction: LFV

In the SM, there is no LFV. In the SM with m_{ν} , it is small.

$$\operatorname{Br}(l_{\alpha} \to l_{\beta}\gamma) \simeq \frac{3\alpha}{32\pi} \left| U_{\mu i} \frac{m_{\nu_{i}}^{2}}{m_{W}^{2}} U_{ie}^{\dagger} \right|^{2}$$

Cheng Li (1977), Petcov (1977), Marciano Sandra (1977), Shrock Lee (1977)

• In the MSSM with ν_R s, it can be large

• The large mixings of neutrinos may imply the large cLFV ...

$$\left(m_{\tilde{L}}^{2}\right)_{\beta}^{\alpha} \simeq -\frac{(6+a_{0}^{2})m_{0}^{2}}{16\pi^{2}} \left(Y_{\nu}^{\dagger}Y_{\nu}\right)_{\beta}^{\alpha} \ln \frac{M_{X}}{M_{R}},$$

$$\operatorname{Br}(l_{\alpha} \to l_{\beta}\gamma) \simeq \frac{\alpha^{3}}{G_{F}^{2}} \frac{\left|\left(m_{\tilde{L}}^{2}\right)_{\beta}^{\alpha}\right|^{2}}{m_{\mathrm{SUSY}}^{8}} \tan^{2}\beta.$$

Borzumati Masiero (1986), Hisano Moroi Tobe Yamaguchi (1995)

LFV in charged lepton sector (cLFV)

The search for the cLFV is promising experiments.
 — However, we here consider an alternative process.

🛇 OSAKA UNIVERSITY

LFV interaction with neutrinos (nLFV)

We here discuss a process with the neutrino flavor violation, such as

$$\mu^- \to \nu_\tau e^- \bar{\nu}_e, \ \nu_\alpha e^- \to \nu_\beta e^-, \ \nu_\alpha d \to \ell_\beta u.$$

These processes affect the neutrino oscillation experiments.

Gonzalez-Garcia Grossman Gusso Nir (2001) Gago Guzzo Nunokawa Teves Zukanovich Funchal (2001) Huber Schwetz Valle (2002) Fogli Lisi Mirizzi Montanino (2002)

- Can we detect these effects in oscillation experiments?
 Yes, we can, but it depends on the type and size of nLFV
 - interaction. TO Sato Yamashita (2001)
- In the MSSM+ ν_R , what is the typical size of nLFV couplings?

— We show the correlation between nLFV and cLFV.

🛇 OSAKA UNIVERSITY

Model independent approach

🗘 OSAKA UNIVERSITY

🛇 OSAKA UNIVERSITY

Signature of the MSSM with ν_{R} s in a long baseline experiment – p.8/20

🛇 OSAKA UNIVERSITY

🛇 OSAKA UNIVERSIT

$$= \Gamma_{\rm SM} \times \left(P_{\nu_{\mu} \to \nu_{\tau}} + 2 {\rm Re} \left[\epsilon^s_{\mu\tau} \mathcal{A}^* (\nu_{\mu} \xrightarrow{\rm osc} \nu_{\tau}) \mathcal{A} (\nu_{\tau} \xrightarrow{\rm no \, osc} \nu_{\tau}) \right] \right) \times \sigma_{\rm SM},$$

where $\epsilon_{\mu\tau}^{s} \equiv \frac{\mathcal{A}(\mu \rightarrow \nu_{\tau} \bar{\nu}_{e} e)}{\mathcal{A}_{\text{SM}}}$.

- The oscillation probability is modified by the interference term due to the nLFV interaction.
- The size of the interference term is O(ε^s_{μτ}), not O(|ε^s_{μτ}|²).
 This interference effect can occure only in the oscillaton process.

Signature of the MSSM with ν_R s in a long baseline experiment – p.10/20

🛇 OSAKA UNIVERSITY

Search for the effect of $\epsilon^s_{\mu\tau}$ **in** $\nu_{\mu} \rightarrow \nu_{\tau}$

Necessary (muon)×(detector size) for 90% CL detection of nLFV.

normalized at $10^{21}\times 100 [\rm kton]$

• $\nu_{\mu} \rightarrow \nu_{\tau}$ channel

•
$$\epsilon^s_{\mu\tau} = 3 \times 10^{-3} \mathrm{e}^{\mathrm{i}\frac{\pi}{2}}$$

• 10% ambiguity is considered in the oscillation parameters, Δm^2 s and θ s, and the CP-phase δ is treated as a free parameter.

$$\mu^- \xrightarrow{G_F} \nu_\mu \xrightarrow{\text{osc.}} \nu_\tau \to \tau^-$$

$$\mu^- \xrightarrow{\epsilon^s_{\mu\tau} G_F} \nu_\tau \xrightarrow{\text{no osc.}} \nu_\tau \to \tau^-$$

• The energy dependence of this signal is $1/E_{\nu}$. It is quite different from the standard oscillation effect($\propto 1/E_{\nu}^2$).

🗘 OSAKA UNIVERSITY

Summary of the model independent analysis

- Detectable signal ...
 - In $\nu_{\alpha} \rightarrow \nu_{\beta}$ channel, we can extract the nLFV signals only with $\epsilon_{\alpha\beta}^{s,m,d}$.
 - by using its characteristic energy dependence.
 - the nLFV amplitude *does not include neutrino oscillation* but its final states are the same as the standard one.

• At a neutrino factory (10^{21} muons $\times 100$ kt detector), we have a chance to detect the signal of $|\epsilon_{\alpha\beta}^{s,m,d}| \sim \mathcal{O}(10^{-4})$.

Summary of the model independent analysis

- Detectable signal ...
 - In $\nu_{\alpha} \rightarrow \nu_{\beta}$ channel, we can extract the nLFV signals only with $\epsilon_{\alpha\beta}^{s,m,d}$.
 - by using its characteristic energy dependence.
 - the nLFV amplitude *does not include neutrino oscillation* but its final states are the same as the standard one.
 - We here deal with $\epsilon_{\mu\tau}^{s,m,d}$ in the $\nu_{\mu} \rightarrow \nu_{\tau}$ channel.
 - At a neutrino factory (10^{21} muons $\times 100$ kt detector), we have a chance to detect the signal of $|\epsilon_{\alpha\beta}^{s,m,d}| \sim \mathcal{O}(10^{-4})$.
 - We make a numerical calculation for the size of nLFV couplings $\epsilon_{\mu\tau}^{s,m,d}$ in the MSSM with ν_R s.

OSAKA UNIVERSI

In the MSSM with $\nu_R s$

Signature of the MSSM with u_R s in a long baseline experiment – p.14/20

Estimation of $\epsilon^s_{\mu\tau}$ **in MSSM**+ ν_R

- The origin of the nLFV is the same as that of the cLFV: slepton mixing
- Naively, $\epsilon_{\mu\tau}^s \sim \mathcal{O}(10^{-4})$ in nLFV corresponds to Br $(\tau \to \mu \gamma) \sim \mathcal{O}(10^{-8})$ in cLFV.
 - However, for quantitative analysis, it is necessary to make a numerical calculation ...

🛇 OSAKA UNIVERSITY

Numerical evaluation of $\epsilon^s_{\mu\tau}$ in MSSM+ ν_R

Numerical evaluation of $\epsilon^m_{\mu\tau}$ in MSSM+ ν_R

Signature of the MSSM with ν_{R} s in a long baseline experiment – p.17/20

Source Matter Detection

Numerical evaluation of $\epsilon^{s,m,d}_{\mu\tau}$ in MSSM+ ν_R

SAKA UNIVERSITY

Correlation between nLFV and cLFV

- Correlation between the nLFV coupling $\epsilon_{\mu\tau}^s$ and cLFV process $\tau \to \mu\gamma$.
 - With some different Y_{ν} s, we scan the m_0 - $M_{1/2}$ space with $a_0 = 0$, $\tan \beta = 10$, and $\mu > 0$.
- The parameter $\epsilon^s_{\mu\tau}$ is constrained at $\mathcal{O}(10^{-5})$ by the current bound of $\tau \rightarrow \mu \infty$

 $\tau \rightarrow \mu \gamma$.

It is smaller than the naive estimation because of cancellation among diagrams.

COSAKA UNIVERSITY

Signature of the MSSM with $\nu_R \, {\rm s}$ in a long baseline experiment – p.20/20

The large neutrino mixings may imply the sizable effect not only for cLFV but also nLFV.

- The large neutrino mixings may imply the sizable effect not only for cLFV but also nLFV.
- The oscillation enhances the nLFV effect due to interference.

- The large neutrino mixings may imply the sizable effect not only for cLFV but also nLFV.
- The oscillation enhances the nLFV effect due to interference.
- We evaluate the effective couplings of nLFV which are relevant to $\nu_{\mu} \rightarrow \nu_{\tau}$ in the MSSM with ν_R s.
 - $\epsilon^s_{\mu\tau}, \epsilon^m_{\mu\tau}, \epsilon^d_{\mu\tau}$ where $\epsilon^{s,m,d}_{\mu\tau} \equiv \text{exotic/standard}$
 - Detectable size: $|\epsilon_{\mu\tau}^{s,m,d}| \gtrsim \mathcal{O}(10^{-4})$

- The large neutrino mixings may imply the sizable effect not only for cLFV but also nLFV.
- The oscillation enhances the nLFV effect due to interference.
- We evaluate the effective couplings of nLFV which are relevant to $\nu_{\mu} \rightarrow \nu_{\tau}$ in the MSSM with ν_R s.
 - $\epsilon^s_{\mu\tau}, \epsilon^m_{\mu\tau}, \epsilon^d_{\mu\tau}$ where $\epsilon^{s,m,d}_{\mu\tau} \equiv \text{exotic/standard}$
 - Detectable size: $|\epsilon_{\mu\tau}^{s,m,d}| \gtrsim \mathcal{O}(10^{-4})$
- In the MSSM with $\nu_R s$, these couplings are constrained by the process $\tau \to \mu \gamma$ as $|\epsilon_{\mu\tau}^{s,m,d}| \lesssim \mathcal{O}(10^{-5})$.

- The large neutrino mixings may imply the sizable effect not only for cLFV but also nLFV.
- The oscillation enhances the nLFV effect due to interference.
- We evaluate the effective couplings of nLFV which are relevant to $\nu_{\mu} \rightarrow \nu_{\tau}$ in the MSSM with ν_R s.
 - $\epsilon^s_{\mu\tau}, \epsilon^m_{\mu\tau}, \epsilon^d_{\mu\tau}$ where $\epsilon^{s,m,d}_{\mu\tau} \equiv \text{exotic/standard}$
 - Detectable size: $|\epsilon_{\mu\tau}^{s,m,d}| \gtrsim \mathcal{O}(10^{-4})$
- In the MSSM with $\nu_R s$, these couplings are constrained by the process $\tau \to \mu \gamma$ as $|\epsilon_{\mu\tau}^{s,m,d}| \lesssim \mathcal{O}(10^{-5})$.
- Other model? R-parity violation ... — CPV MSSM ... — SU(5) GUT ...

OSAKA UNIVERSIT