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There has been a long-time belief that
the fundamental theory of Nature be the simplest.

large class of symmetries

/

complexity of the real world

Breaking of the symmetries will reconcile
the simple world with the complex reality.



explicit breaking  so slightly that some remnant can be found

a quark mass violates the chiral symmetry

KM phase in the CKM quark mixing matrix violates CP

spontaneous breaking

We shall see this in some detail later.

anomaly breaking by the regularization
mass scale (cut off)
conformal symmetry
chiral symmetry
supersymmetry



Spontaneous Symmetry Breaking (SSB)

A symmetry of the Lagrangian

A

While L(¢) is invariant (up to a total deriv.) under

b § =060 =R
N\

representation matrix

the vacuum is not invariant:

U]0) # [0)
For a continuous symmetry, U = ei@, this is equiv. to

Q|0) # 0



An example : ferro-magnetism

Hamiltonian of the spin model

H=—x Z Si* 8; invariant under the spatial rotation
(2,4)
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degenerate ground state
D 4

breaks the rotational symmetry
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In QFT, the symmetry is broken by the vacuum,

if nontrivially
UpiU™" = Rijp; # pi (Rij # dij)

proof)
Let v; = (0|;]0).

if U7'0) =10) = v; = (0|UH:;U10) = R;;(04;]0) = R;;v;

(Rz‘j — 57;j)vj — 0 holds for "R #~ o iff v; =0

v, 40 = U0) # |0)
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As long as the Lorentz symmetry is not broken,
any operator that can acquire nonzero VEV must be a scalar.

e.g.
Higgs field in the SM
L= (D,®)'D'®d — [—1>®Td + A\(®T®)?] 4 Yukawa int.
invariant under SU(2)r X U(1)y gauge trf.
Oi(x) = Rij(x)®;(z)
(I)Z(.CZ?) — CID;L(:L‘)RL
v; = (0|, (x)]|0)=#£ 0 Symmetry is broken

scalar operator



Chiral condensate in the QCD

L=> qr(@)in"Dugs(x)
-

qr(x) : flavor-f, color triplet Dirac spinor

Lorentz symmetry — (0|¢f()|0) =0

L invariant under SU(3). and U(Ny)r, x U(Ny¢)g trf.

~ SU(Nf)L X SU(Nf)R X U(l)B X U(l)A
axial anomary

19 = 4rqr + qrqr is not invariant under SU(N¢)p X SU(N¢)g.

(0] g(x)g(x)|0) #£ 0O SU(Ny¢)r x SU(Ny)g is broken to SU(Ny)y

dimSU(Ny) = N7 — 1 massless NG bosons

For Ny = 2, three m mesons
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How symmetry is borken depends on the representation
of the operator which acquires VEV.

eg8 SU(2) gauge-Higgs system
doublet L = (DM@)TD”(I) — [—MQCI)T(I) T )‘((I)T(D)Z}

(D) = (2) fully breaks SU (2)
triplet L=D,p - D"¢ — [—,UQCb P+ Ao Cb)ﬂ

(¢) = (8) breaks SU(2) to O(2) ~ U(1).

(T )@=

&



Physical consequence depends on
whether the symmetry is global or local.

global sym. Nambu-Goldstone theorem

massless bosons of the same quantum number
as the broken generator

local (gauge) sym. Higgs mechanism

massive gauge boson (no massless boson)

other masses, former prohibited by the sym.

fermion mass from the Yukawa coupling
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Some kinds of SSB are excluded
--- restrictions from cosmology ---

Consider the Friedmann-Robertson-Walker Universe:

dr? ]
ds® = g, (x)dztdx” = dt* — Ria(t)? . _T]WQ -2 (dO? + sin® Od¢*)
scale factor
relative to the present
radiation dominant era :
o(t) o< a(t)™* a(t) o« T71 o t172,

matter dominant era :

p(t) o< alt) ™ a(t) oc 17
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stable topological objects

Classical solutions to nonlinear field equations

The conservation of the topological charge guarantees
their stability.

Once created in the early Universe, they become to
to ruin the successful
Big Bang Cosmology.

Reviews on the classical solutions in field theories:

S. Coleman, Classical Lumps and their quantum descendants’
in the textbook Aspects of Symmetry

Cheng and Li, Chapter |5 of Gauge theory of elementary
barticle physics
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domain wall SSB of a global discrete symmetry

Zy  L(—9) = L(d) (@) # 0

energy per unit area ~ v

N via(t)? N 1
POW ™ 70~ a(d)

dominates over radiation or matter in the late era

Example of discrete sym.:
internal Zy V() 3 ¢ +h.c. + ||’
o — 2™ Ngp (n=0,1,---N —1)
C'P symmetry

R-parity in a SUSY model
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string or vortex SSB of U(1) gauge symmetry

v = 0 within the string
v # 0 outside of the string

phase of ¢(x) : 0 — 27

around the string

energy density per unit length ~ v?

v2a(t) 1
string ™~ X
Ptrins 63 7 alt)?

14



nonabelian monopole SSB of SU(2) gauge symmetry to U (1)

magnetically charged w.r.t. the U(1)

This SSB could occur in some GUTs.

Number of the monopoles > 0.01 x Number of baryons

mass scale ~ vgurt 2> 10*°GeV

Absence of these topological objects is required to
a Beyond-the-Standard Model.
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How to study a spontaneous symmetry breaking?

Evaluate (0/2[0)

N\

@ = some scalar operator with nontrivial representation

Formally, it is expressed, in terms of the path integral, as

(0/2/0) = / 400l 6 = {D(a), Au(a),¥(a),- )

Lattice MC calculation (compact gauge fields)

¢ : gauge-invariant operator, otherwise (¢) = 0

(q(z)q(z)), <<I>T(£IJ)<I>(:E)> ,-++- can be computed
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A perturbative method to study a SSB

effective potential

‘/eff(v) — <O|H(¢27 zﬁa AM? "o )|O>

(p)=v

0),;)—, = the vacuum satis

fying (@) = v

the v is the VEV we’re looking for

Reviews on the effective potential:

S. Coleman, Secret Symmetry’ in the textbook Aspec
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eg. real ¢* theory = — u¢ O*p — —,u 2% — i

1? could be positive or negative

Vetr(v) = Vireo(v) + all vacuum diagrams in the presence of v

1 A A A
L — ( Op)” — (M u Uz} ¢° — 67@3 - 1954

mass insertion

~ Vireo(v Q@ G e

2 loop and more
1 =1 ( ?/2
—5,“'0 +qu +z/ E: on <k2—,u> T

1,y A /d4k A2 /2
_ A S low [ 1
VTR T2 aod %8 Z_z) "

UV divergent
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after renormalization,
1 A 2 4 \w?/2)? 24 \?/2 3
WP (A B

2.2 o =
BT 6472 M2 2

M : renormalization scale
v=0 (u* > 0)
v=1/6p2/x (u*<0)

is modified by the loop corrections.

’

the tree level min. at <

\

Even if y? > 0, the min. of V g(v) is realized at v # 0 for very small |u?].

That is, the SSB is caused by the radiative corrections.

Coleman-Weinberg mechanism
S. Coleman and E.Weinberg, Phys. Rev. D8 (1973)
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We shall go on to the other topic,

finite-temperature behavior
of spontaneously broken symmetries.
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the example of ferro-magnetism

Heating up a magnet looses its magnetism.

1 SN Symmetry restoring
! <\ phase transition

Fe: 1043K

One may expect a similar symmetry restoring
Phase Transition to in a SSB QFT.

21



We can apply the statistical mechanics to study
static features of the phase transition,

when the Hubble parameter is less than the interaction rates.

~a(t) 8

H(t) = a(h) = T,Or(t) < I'(t)

Interaction rate

determined by
the cross section and number density

22



Interaction rate

for relativistic species T'"!' =f~ )\ mean free path

m <1
@2 CVQ for the weak interaction,
total cross section of that species o ~ — ~ — 95 Qem
S T X = — — — 7
dmw  sin” Oy
: C(S) 3 3
number density n(T) =~ g., ?T Gxn = %:QB T EF:QF

effective degrees of freedom




expansion rate  H(T) = {/ ——pr(T) = 1.66y/7. 7—
Pl Mp; = 1.22 x 10°GeV

d>p D L 72
(T) = - 30
pr(T) /(2%)3 elPl/T 1 {7/8} 30

when all the SM particles are relativistic

at T' = 100GeV
104
1.22 x 1019

GeV ~ 10" GeV
A
= 10°(7)?GeV = (1 — 10)GeV

H(T) = 1.66v106.75 x

o(T)*T
10

F(T) = Jxn

At temperatures of the weak scale, we can safely regard
all the SM particles are in thermal equilibrium at O(100)GeV.
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Quantum Field Theory at finite temperatures

Kapusta and Gale, ‘Finite-temperature field theory’ (2006) 2nd ed.
Le Bellac, “Thermal Field Theory’ (2000)

Landsman and van Weert, Phys. Rep. 145 (1987) 41

Dolan and Jackiw, Phys. Rev. D9 (1974) 3320

zero-temp. QFT finite-temp. QFT
(O)

AN

(0] O [0) (0) = Te[Oe /7)) 2(T)

Z(T) = Tr[e H/T]

Ver(0) = (O H[0)[ -, Ver(vsT) = (free energy density at 7).,

(p)=v
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free energy vs order parameter (Higgs VEV) at finite T

Vesr(v T) Verr(0;T)

T > T > 0

2nd order PT

T > T > 0

order parameter

AN

= 1 T
Ve 1%1}10“( ) # 0

1st order
phase transition

T: T

1st order PT
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Path-integral representation of the partition function

Tr(e /Ty = N(T) /

¢(0,x) = ¢(1/T, x) boson
Y(0,x) = —(1/T, x) fermion
Differences from QFT at T=0
1
propagators (Te(2)¢(0)) ~ 15—
_ 1
(TY@)H(0) ~ ——

momentum int. / d'k
(2m)*

Wiclk’s theorem

27

1/T
) [do| exp <—/0 d*z g £E(§b)>

euclidean
path integral

K = iw, = im2nT

_w2 _ kQ _mQ

Z’YO(Dn — 7k —m

Bloch-De Dominicis theorem



Standard Model V(®) = —p2®Td 4 \(PTD)?

) — ifa(@)a/2 0
#) <<v + h(x))/ﬁ>

! A
V= (—p"+M)h+ 5(—u2 + 3 A% + Avh® + Zh4
12
tree-level min. at vy = ~
tree-level mass of the higgs : m; = —p® + 3 5 = 2\v;

For simplicity, we consider the |-loop corrections from
the
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Formulas for the |-loop corrections

|-loop corr. to the effective potential for the real scalar theory

( d*k Av? /2 ( d*k 5 9 :
-5 /(277)4 log(l — 130 ,u2> = —3 /(277)4 log(k — m¢(v)) + v-indep. const.
m2(v) = u? + 207
¢ 2

Zz/ dSk lOg (wQ_I_kQ_I_mQ(U)) w.. = danT
2 £~ | (2m)3 " & '

1 [ d*kg ) : d°k — /RZFm2 (0)/T
= 5/(277)4 log (k% +mg(v)) — T/ 2 log(l —eV ¢ )

renormalization

m4 (v) m2(v) 3 T4 [°°
_ e ¢ | 2 /22 m2 (0) /T2
= 42 log 5 |- 2#2/0 dx x log(l eV ¢ )
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Var(; T) = =202 + 20 4 N eq [F(m3(0)) + Ta(ma(v)/T)]

renormalized |-loop corr.

statistics and degrees of freedom ¢ = —4 - 3color = —12, cw = 0, Cy =9

2 2
pooo Ay 4 vt 3 (-
— —?/U — Z?} — 2Bv (lOg 1;—8 — 5) -+ V(U7 T)

3

b = il (Qmé‘/ +my — 4mf) (coupling)*®

0
_ T4 moa (v
V(”U;T) — ﬁ(613(aw)—|—313(az) —6]F(at)) aAaA = 1?[‘( )

Ip r(a) = / dz % log (1 == e_\/w2+a2)
0

30



High-T expansion of Ip r(a) = / dz z° log (1 T e_\/w2+“2)
a=m/T <1 :
4 7’ T 32 a va2  a? 3
Ji _ | 4 = (.2 ] Y §)
pla) = — gt 5T 5@ 16 ° 4r 16 (VE 4> +O0la’)
Tnt| 7’ a’ Va2 o 3
Ir(a) = 2_ 4 _2 6
Fa) =350 2% T 16 T 16 (VE 4) +O0la’)
. T4
V(v;T) = o2 (61g(aw) + 3Ig(ayz) — 61r(a;))

+T%a? ~ +T%v> —> symmetry restoration at high-T
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1> mw,mgz,my

A
Vere(v; T) ~ D(T? — T v* — ETv” A 4T v

 2miy, + my + 2m; B 2m3y, + m3,

D — E — ~ 1072
82 4t
3 4 m%/v | 4 mQZ 4 m%
)\T — \ — 167‘(2@3 (sz lOg OzBTQ - TN 1Og CVBTQ - 4mt log OKFTQ
, w2 —4Bv? log ap(p) = 2log(4)m — 29
T4 —
2D

At T, the local min. at v~ degenerates with that at v = 0.

Vett(vo; T ) = Verr(0; 1)

2FET
= < | st order PT

vC
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In most cases, the perturbative expansion
is not a good approximation.

4
e.d. §b theory Dolan and Jackiw, Phys. Rev. D9 (1974)

corrections to 2-point function

Q o AT2T (2 /T2) ~ \T?

AT -

~ )\TQ)\log—

£
\__/
T
Lorpil T é NATQ AT)

~ T2

| 3

m
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v¢ the leading correction to m? ~ A1

w the bubble subdiagram yields the largest corrections

T2
Q a factor of )\— from a bubble

m?2

m
L > — loop expansion is invalidated

The leading correction(~ A7%) to m?* can be incorporated by
‘resummation’

NONNOION

o AT ,
| o4 in the propagator

m? — m? + Arm? =m
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A nonperturbative analysis: Lattice MC calculation

Z(T) =Tr (e H/T) = dP dU,|exp (—Sg|®, U
= ()= [ v e (Sele.U)

U,(x) = e'944(®) |ink variable

[Csikor, hep-1at/9910354]

| st order Phase Transition for m; < 66.5 + 1.4 GeV
Te ~ 90 — 100 GeV

- 1.4 GeV

End point of the Phase Transition at m;, = 72.1 =

myp, = 125GeV == Cross Over

v(T) changes
as the Universe

35
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As expected, we have seen that
the broken gauge symmetry was restored at high temperatures.

T = T>T02100G€V

EWPT

(Electroweak PT)

< )/" TC />

Higgs field

mp > 72GeV no dramatic event

Recall

may be for m; > 67GeV
Y . H(T) ~ 107 14GeV < FEw(T) ~ 1GeV
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Some extension of the SM predicts the first order EVPT.

If it is of strong first order, some cosmological events could occur.

large ;—C, and /or lare latent heat
C

The expansion of the bubble of the broken phase within the
symmetric phase realizes nonequilibrium state.

A
Vst Ty <Te
nucleation temp.

broken

« -
phase PR

»” N

v 7
symmetric phase O \

Y

Vete(0; T ) — Vete(ve; T )
1
latent heat
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1. Generation of Gravitational Wave

) ) eLISA config.
= o oo R ws ol o 0 arm length/#links

e C1: 5Mkm/6

| C2: IMkm/6

: C3: 2Mkm/4

C4: IMkm/4

' - 1') L A -~
001 001 0.1 10 - 0001 001 0.1

[ -
flHz]

f1Hz]

Figure 2. Example of GW spectra in Case |, for fixed T, = 100GeV, o = 0.5, v, = 0.95, and
varying 3/H.,: from left to right, 3/H. = | and 3/H,. = 10 (top), 3/H. = 100 and 3/H,. = 1000
(hottom ). |[The black line denotes the total GW spectrium) the green line the contribution from sonnd
waves, the red line the contribution from NMHID) turbulence. The shaded areas represent the regions
detectable by the C'1 (red), C2 (magenta), C3 (blue) and C4 (green) configurations.

Ref.: C. Caprini, JCAP 04 (2016) 001
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2. Electroweak Baryogenesis

v(T) =
Jo, JR —> —> [, /R
D — < fr, /R
—> f1, /R

< vafR

spheron process

AB+L)=08§ AB+L)#£0

decoupled in equilibrium

CP violation

chiral charge QQ;, — Qr # 0

accumulated in the sym. phase

bias on the sphaleron process

(B + L) is generated

Reviews : KF, Prog. Theor. Phys. 96 (1996) 475
Rubakov and Shaposhnikov, Phys. Usp. 39 (1996) 461
Riotto and Trodden, Ann. Rev. Nucl. Part. Sci. 49 (1999) 35
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Summary

« "Symmetry’ is a guiding principle to build a particle physics
mode.

 Except for some symmetries
, most of them are broken explicitly (but very

slightly) or spontaneously.

« While some of SSB’s are prohibited, spontaneously broken
symmetries leave their trace — NG bosons, massive
vectors, once SSB’s occur.

< Spontaneously broken symmetries are restored at high
temperatures. The SSB PT could cause a dramatic event
such as generation of GW and baryon asymmetry.
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Problem radiative symmetry breaking in the massless scalar QED

= (Du6)* D6 — N&°0)* — T Fyu F**

Du - 8# + rL'@AM N.B. No mass scale in this £!

1. Set ¢(x) = \% (v + o(x) + im(x)) to find the effective potential Vg (v)
by taking into account only the 1-loop correction from the gauge boson.

hint: Put m(v), which is the gauge-boson mass in the presence of the VEV v, into the ‘formula’.

Be careful about the degree of freedom of the gauge boson.

2. Determine the ren. scale M by requiring that the minimum of Vg (v) is realized at vy.

That is, represent M in terms of (vg, A, e).

3. Write down the finite-temperature effective potential Vege(v;T") with the 1-loop correction from A,,.

4. Study the phase transition of this model by use of Vg (v;T) obtained in 3.
Use the high-T" expansion for the function Ig(a). If possible, numerically evaluate Ig(a).
Draw Vg (v; T') as a function of v for several T', and find v and T if possible.
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